Submission #1051074

# Submission time Handle Problem Language Result Execution time Memory
1051074 2024-08-09T19:17:39 Z beaconmc Spy 3 (JOI24_spy3) C++17
0 / 100
1000 ms 10272 KB
#include "Aoi.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;

namespace {

const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<vector<ll>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];


}  // namespace


string aoi(int N, int M, int Q, int K, vector<int> A,vector<int> B, vector<long long> C,
                vector<int> T, vector<int> X) {
    string ans;

    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){
        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
 
            if (node[1] == T[i]) break;
            pq.pop();
            node[0] = -node[0];
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }
        unordered_set<ll> stuff;
        ll cur = T[i];

        
        while (prevs[cur][1] != -1){
            stuff.insert(prevs[cur][1]);
            cur = prevs[cur][0];
        }


        FOR(j,0,K){
            if (stuff.count(X[j])) ans += '1';
            else ans += '0';
        }

    }
    return ans;


}
#include "Bitaro.h"
#include <bits/stdc++.h>
 
typedef long long ll;
#define FOR(i,x,y) for(ll i=x; i<y; i++)
#define FORNEG(i,x,y) for(ll i=x; i>y; i--)

using namespace std;
namespace {
const ll INF = 10000000000000000;
const ll maxn = 10005;
vector<vector<ll>> edges[maxn];
vector<ll> prevs[maxn];
ll dists[maxn];
bool visited[maxn];
}  // namespace




void bitaro(int N, int M, int Q, int K, vector<int> A, vector<int> B,
            vector<long long> C, vector<int> T, vector<int> X,
            string s) {



    FOR(i,0,M){
        edges[A[i]].push_back({B[i], C[i], i});
        edges[B[i]].push_back({A[i], C[i], i});
    }
    FOR(i,0,Q){

        FOR(k,0,maxn) dists[k] = INF, prevs[k] = {-1, -1}, visited[k] = 0;
        unordered_set<ll> idk;
        FOR(j, K*i, K*(i+1)){
            if (s[j] == '1') idk.insert(X[j-K*i]);
        }

        unordered_set<ll> idkman;
        for (auto&i : X) idkman.insert(i);

        FOR(i,0,maxn){
            for (auto&j : edges[i]){
                if (idk.count(j[2])) j[1] = 1;
                else if (idkman.count(j[2])) j[1] = INF;
            }
           

        }


        priority_queue<vector<ll>> pq;

        dists[0] = 0;

        pq.push({0, 0});
        while (pq.size()){
            vector<ll> node = pq.top();
            if (node[1] == T[i]) break;
            pq.pop();
            node[0] = -node[0];
            for (auto&i : edges[node[1]]){
                if (dists[i[0]] > node[0] + i[1]){
                    prevs[i[0]] = {node[1], i[2]};
                    dists[i[0]] = node[0] + i[1];
                    pq.push({-dists[i[0]], i[0]});
                }
            }
        }

        vector<int> stuff;

        ll cur = T[i];
        
        while (prevs[cur][1] != -1){
            stuff.push_back(prevs[cur][1]);
            cur = prevs[cur][0];
        }

        reverse(stuff.begin(), stuff.end());

        answer(stuff);



    }


}
# Verdict Execution time Memory Grader output
1 Partially correct 26 ms 8948 KB Partially correct
2 Correct 2 ms 2320 KB Output is correct
3 Partially correct 65 ms 8552 KB Partially correct
4 Partially correct 76 ms 7968 KB Partially correct
5 Partially correct 73 ms 8376 KB Partially correct
6 Partially correct 74 ms 8496 KB Partially correct
7 Partially correct 67 ms 8520 KB Partially correct
8 Partially correct 73 ms 8464 KB Partially correct
9 Partially correct 55 ms 7872 KB Partially correct
10 Correct 22 ms 8116 KB Output is correct
11 Partially correct 71 ms 8508 KB Partially correct
12 Correct 90 ms 8372 KB Output is correct
13 Partially correct 66 ms 8468 KB Partially correct
14 Partially correct 57 ms 8372 KB Partially correct
15 Correct 61 ms 8360 KB Output is correct
16 Correct 18 ms 7944 KB Output is correct
17 Partially correct 95 ms 8444 KB Partially correct
18 Partially correct 86 ms 8256 KB Partially correct
19 Partially correct 131 ms 10220 KB Partially correct
20 Partially correct 97 ms 10272 KB Partially correct
21 Partially correct 132 ms 10240 KB Partially correct
22 Execution timed out 1010 ms 5084 KB Time limit exceeded
23 Halted 0 ms 0 KB -