Submission #1050581

# Submission time Handle Problem Language Result Execution time Memory
1050581 2024-08-09T11:29:41 Z aykhn Comparing Plants (IOI20_plants) C++17
100 / 100
778 ms 177672 KB
#include "plants.h"
#include <bits/stdc++.h>
 
using namespace std;
 
const long long MXN = 2e5 + 5;
const long long LOG = 20;

#define inf 0x3F3F3F3F
 
long long n;
array<long long, 2> p[2][LOG][MXN];
long long rr[MXN], f[MXN];
long long cnt[MXN];
array<long long, 2> st[MXN << 2];
long long lz[MXN << 2];

void build(long long l, long long r, long long x)
{
	if (l == r)
	{
		st[x] = {cnt[l] - rr[l], l};
		return;
	}
	long long mid = (l + r) >> 1;
	build(l, mid, 2*x);
	build(mid + 1, r, 2*x + 1);
	st[x] = min(st[2*x], st[2*x + 1]);
}
void relax(long long l, long long r, long long x)
{
	if (!lz[x]) return;
	st[x][0] += lz[x];
	if (l == r)
	{
		lz[x] = 0;
		return;
	}
	lz[2*x] += lz[x], lz[2*x + 1] += lz[x];
	lz[x] = 0;
}
void upd(long long l, long long r, long long x, long long lx, long long rx, long long val)
{
	if (lx > rx) return;
	relax(l, r, x);
	if (l > rx || r < lx) return;
	if (l >= lx && r <= rx)
	{
		lz[x] += val;
		relax(l, r, x);
		return;
	}
	long long mid = (l + r) >> 1;
	upd(l, mid, 2*x, lx, rx, val);
	upd(mid + 1, r, 2*x + 1, lx, rx, val);
	st[x] = min(st[2*x], st[2*x + 1]);
}

set<long long> idx;
set<array<long long, 2>> dif;

void ins(long long x)
{
	idx.insert(x);
	if (idx.size() == 1)
	{
		dif.insert({0, x});
		return;
	}
	auto it = idx.find(x);
	auto itl = it, itr = it;
	if (it == idx.begin()) itl = prev(idx.end());
	else itl = prev(it);
	if (next(it) == idx.end()) itr = idx.begin();
	else itr = next(it);
	dif.erase({(*itr - *itl + n) % n, *itr});
	dif.insert({(x - *itl + n) % n, x});
	dif.insert({(*itr - x + n) % n, *itr});
}
void ers(long long x)
{
	if (idx.size() == 1)
	{
		idx.clear();
		dif.clear();
		return;
	}
	auto it = idx.find(x);
	auto itl = it, itr = it;
	if (it == idx.begin()) itl = prev(idx.end());
	else itl = prev(it);
	if (next(it) == idx.end()) itr = idx.begin();
	else itr = next(it);
	dif.erase({(x - *itl + n) % n, x});
	dif.erase({(*itr - x + n) % n, *itr});
	dif.insert({(*itr - *itl + n) % n, *itr});
	idx.erase(it);
}
// 4 3 2
// 0 1 1 2
// 0 2
// 1 2

 
void init(int k, vector<int> r) 
{
	n = r.size();
	f[n] = inf;
	p[0][0][n] = {n, 0};
	p[1][0][n] = {n, 0};
	for (long long i = 1; i <= (n * 4); i++) st[i] = {inf, -1};
	for (long long i = 0; i < n; i++) rr[i] = r[i];
	for (long long i = 0; i < n; i++) cnt[i] = k - 1;
	build(0, n - 1, 1);
	while (1)
	{
		array<long long, 2> x = st[1];
		if (!x[0]) 
		{
			ins(x[1]);
			upd(0, n - 1, 1, x[1], x[1], inf);
		}
		else break;
	}
	long long cur = 0;
	while (!idx.empty())
	{
		long long ind = (*dif.rbegin())[1];
		ers(ind);
		f[ind] = ++cur;
		if (ind - 1 >= 0) upd(0, n - 1, 1, max(ind - k + 1, 0LL), ind - 1, -1);
		if (ind - k + 1 < 0) upd(0, n - 1, 1, (ind - k + 1 + n) % n, n - 1, -1);
		// for (long long i = (idx[ind] - 1 + n) % n; i != idx[(ind - 1 + sz) % sz]; i = (i - 1 + n) % n)
		// {
		// 	if (!f[i]) adj[idx[ind]].push_back(i);
		// }
		// for (long long i = (idx[ind] + 1) % n; i != (idx[ind] + k) % n; i = (i + 1) % n)
		// {
		// 	if (!f[i]) adj[idx[ind]].push_back(i);
		// }
		// for (long long i = (idx[ind] - 1 + n) % n; i != (idx[ind] - k + n) % n; i = (i - 1 + n) % n)
		// {
		// 	if (!f[i]) adj[idx[ind]].push_back(i);
		// 	cnt[i]--;
		// }
		// f[idx[ind]] = 1;
		while (1)
		{
			array<long long, 2> x = st[1];
			if (!x[0]) 
			{
				ins(x[1]);
				upd(0, n - 1, 1, x[1], x[1], inf);
			}
			else break;
		}
	}
	set<array<long long, 2>> s;
	for (long long i = 0; i < k; i++) s.insert({f[i], i});
	for (long long i = n - 1; i >= 0; i--)
	{
		s.erase({f[(i + k) % n], (i + k) % n});
		auto it = s.lower_bound({f[i], i});
		if (it != s.end()) 
		{
			p[0][0][i] = {(*it)[1], ((*it)[1] - i + n) % n};
		}
		else p[0][0][i] = {n, inf};
		s.insert({f[i], i});
	}
	s.clear();
	for (long long i = n - k; i < n; i++) s.insert({f[i], i});
	for (long long i = 0; i < n; i++)
	{
		s.erase({f[(i - k + n) % n], (i - k + n) % n});
		auto it = s.lower_bound({f[i], i});
		if (it != s.end()) 
		{
			p[1][0][i] = {(*it)[1], (i - (*it)[1] + n) % n};
		}
		else p[1][0][i] = {n, inf};
		s.insert({f[i], i});
	}
	// for (long long i = 0; i < n; i++)
	// {
	// 	cout << f[i] << ' ';
	// }
	// cout << '\n';
	// for (long long i = 0; i < n; i++)
	// {
	// 	cout << p[0][0][i][0] << ' ';
	// }
	// cout << '\n';
	// for (long long i = 0; i < n; i++)
	// {
	// 	cout << p[1][0][i][0] << ' ';
	// }
	// cout << '\n';
	for (long long j = 0; j < 2; j++)
	{
		for (long long i = 1; i < LOG; i++)
		{
			for (long long k = 0; k <= n; k++)
			{
				long long par = p[j][i - 1][k][0];
				p[j][i][k] = {p[j][i - 1][par][0], p[j][i - 1][par][1] + p[j][i - 1][k][1]};
			}
		}
	}
}

long long check(long long x, long long y)
{
	long long x1 = x;
	long long d = (y - x + n) % n;
	long long res = 0;
	for (long long i = LOG - 1; i >= 0; i--)
	{
		if (f[p[0][i][x][0]] <= f[y]) 
		{
			res += 1LL * p[0][i][x][1];
			x = p[0][i][x][0];
		}
	}
	if (f[x] <= f[y] && res >= d) return 1;
	res = 0, x = x1;
	d = (x - y + n) % n;
	for (long long i = LOG - 1; i >= 0; i--)
	{
		if (f[p[1][i][x][0]] <= f[y]) 
		{
			res += 1LL * p[1][i][x][1];
			x = p[1][i][x][0];
		}
	}
	return (f[x] <= f[y] && res >= d);
}

int compare_plants(int x, int y) 
{
	// ? x < y
	if (check(x, y)) return -1;
	if (check(y, x)) return 1;
	return 0;
	// return (a[x] > a[y] ? 1 : -1);
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 35420 KB Output is correct
2 Correct 2 ms 31452 KB Output is correct
3 Correct 2 ms 31324 KB Output is correct
4 Correct 3 ms 35420 KB Output is correct
5 Correct 2 ms 31324 KB Output is correct
6 Correct 36 ms 36096 KB Output is correct
7 Correct 84 ms 47448 KB Output is correct
8 Correct 360 ms 162644 KB Output is correct
9 Correct 388 ms 163156 KB Output is correct
10 Correct 452 ms 162900 KB Output is correct
11 Correct 453 ms 161760 KB Output is correct
12 Correct 456 ms 162128 KB Output is correct
13 Correct 452 ms 151888 KB Output is correct
14 Correct 488 ms 173604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 35420 KB Output is correct
2 Correct 2 ms 31324 KB Output is correct
3 Correct 2 ms 31324 KB Output is correct
4 Correct 3 ms 33372 KB Output is correct
5 Correct 4 ms 33372 KB Output is correct
6 Correct 5 ms 33884 KB Output is correct
7 Correct 68 ms 36876 KB Output is correct
8 Correct 4 ms 31324 KB Output is correct
9 Correct 6 ms 33880 KB Output is correct
10 Correct 71 ms 38920 KB Output is correct
11 Correct 68 ms 38740 KB Output is correct
12 Correct 61 ms 41068 KB Output is correct
13 Correct 79 ms 38996 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 35420 KB Output is correct
2 Correct 2 ms 31324 KB Output is correct
3 Correct 2 ms 31324 KB Output is correct
4 Correct 3 ms 33372 KB Output is correct
5 Correct 4 ms 33372 KB Output is correct
6 Correct 5 ms 33884 KB Output is correct
7 Correct 68 ms 36876 KB Output is correct
8 Correct 4 ms 31324 KB Output is correct
9 Correct 6 ms 33880 KB Output is correct
10 Correct 71 ms 38920 KB Output is correct
11 Correct 68 ms 38740 KB Output is correct
12 Correct 61 ms 41068 KB Output is correct
13 Correct 79 ms 38996 KB Output is correct
14 Correct 130 ms 47532 KB Output is correct
15 Correct 778 ms 160596 KB Output is correct
16 Correct 112 ms 49688 KB Output is correct
17 Correct 750 ms 164332 KB Output is correct
18 Correct 522 ms 162556 KB Output is correct
19 Correct 598 ms 167640 KB Output is correct
20 Correct 770 ms 169196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 33372 KB Output is correct
2 Correct 3 ms 31324 KB Output is correct
3 Correct 58 ms 35340 KB Output is correct
4 Correct 470 ms 159824 KB Output is correct
5 Correct 478 ms 154504 KB Output is correct
6 Correct 523 ms 152912 KB Output is correct
7 Correct 551 ms 153428 KB Output is correct
8 Correct 699 ms 158544 KB Output is correct
9 Correct 466 ms 156376 KB Output is correct
10 Correct 499 ms 158036 KB Output is correct
11 Correct 437 ms 154964 KB Output is correct
12 Correct 512 ms 177672 KB Output is correct
13 Correct 546 ms 159824 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 31324 KB Output is correct
2 Correct 2 ms 29276 KB Output is correct
3 Correct 3 ms 29272 KB Output is correct
4 Correct 3 ms 29276 KB Output is correct
5 Correct 2 ms 29276 KB Output is correct
6 Correct 3 ms 29276 KB Output is correct
7 Correct 11 ms 28116 KB Output is correct
8 Correct 11 ms 30040 KB Output is correct
9 Correct 12 ms 30040 KB Output is correct
10 Correct 11 ms 30044 KB Output is correct
11 Correct 11 ms 30044 KB Output is correct
12 Correct 11 ms 32136 KB Output is correct
13 Correct 11 ms 27996 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 29276 KB Output is correct
2 Correct 3 ms 29272 KB Output is correct
3 Correct 2 ms 29272 KB Output is correct
4 Correct 2 ms 27228 KB Output is correct
5 Correct 4 ms 29788 KB Output is correct
6 Correct 410 ms 153172 KB Output is correct
7 Correct 429 ms 153168 KB Output is correct
8 Correct 530 ms 153420 KB Output is correct
9 Correct 604 ms 158544 KB Output is correct
10 Correct 366 ms 155600 KB Output is correct
11 Correct 416 ms 160592 KB Output is correct
12 Correct 351 ms 161872 KB Output is correct
13 Correct 456 ms 156496 KB Output is correct
14 Correct 467 ms 155476 KB Output is correct
15 Correct 499 ms 156028 KB Output is correct
16 Correct 390 ms 158944 KB Output is correct
17 Correct 425 ms 155440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 35420 KB Output is correct
2 Correct 2 ms 31452 KB Output is correct
3 Correct 2 ms 31324 KB Output is correct
4 Correct 3 ms 35420 KB Output is correct
5 Correct 2 ms 31324 KB Output is correct
6 Correct 36 ms 36096 KB Output is correct
7 Correct 84 ms 47448 KB Output is correct
8 Correct 360 ms 162644 KB Output is correct
9 Correct 388 ms 163156 KB Output is correct
10 Correct 452 ms 162900 KB Output is correct
11 Correct 453 ms 161760 KB Output is correct
12 Correct 456 ms 162128 KB Output is correct
13 Correct 452 ms 151888 KB Output is correct
14 Correct 488 ms 173604 KB Output is correct
15 Correct 3 ms 35420 KB Output is correct
16 Correct 2 ms 31324 KB Output is correct
17 Correct 2 ms 31324 KB Output is correct
18 Correct 3 ms 33372 KB Output is correct
19 Correct 4 ms 33372 KB Output is correct
20 Correct 5 ms 33884 KB Output is correct
21 Correct 68 ms 36876 KB Output is correct
22 Correct 4 ms 31324 KB Output is correct
23 Correct 6 ms 33880 KB Output is correct
24 Correct 71 ms 38920 KB Output is correct
25 Correct 68 ms 38740 KB Output is correct
26 Correct 61 ms 41068 KB Output is correct
27 Correct 79 ms 38996 KB Output is correct
28 Correct 130 ms 47532 KB Output is correct
29 Correct 778 ms 160596 KB Output is correct
30 Correct 112 ms 49688 KB Output is correct
31 Correct 750 ms 164332 KB Output is correct
32 Correct 522 ms 162556 KB Output is correct
33 Correct 598 ms 167640 KB Output is correct
34 Correct 770 ms 169196 KB Output is correct
35 Correct 3 ms 33372 KB Output is correct
36 Correct 3 ms 31324 KB Output is correct
37 Correct 58 ms 35340 KB Output is correct
38 Correct 470 ms 159824 KB Output is correct
39 Correct 478 ms 154504 KB Output is correct
40 Correct 523 ms 152912 KB Output is correct
41 Correct 551 ms 153428 KB Output is correct
42 Correct 699 ms 158544 KB Output is correct
43 Correct 466 ms 156376 KB Output is correct
44 Correct 499 ms 158036 KB Output is correct
45 Correct 437 ms 154964 KB Output is correct
46 Correct 512 ms 177672 KB Output is correct
47 Correct 546 ms 159824 KB Output is correct
48 Correct 2 ms 31324 KB Output is correct
49 Correct 2 ms 29276 KB Output is correct
50 Correct 3 ms 29272 KB Output is correct
51 Correct 3 ms 29276 KB Output is correct
52 Correct 2 ms 29276 KB Output is correct
53 Correct 3 ms 29276 KB Output is correct
54 Correct 11 ms 28116 KB Output is correct
55 Correct 11 ms 30040 KB Output is correct
56 Correct 12 ms 30040 KB Output is correct
57 Correct 11 ms 30044 KB Output is correct
58 Correct 11 ms 30044 KB Output is correct
59 Correct 11 ms 32136 KB Output is correct
60 Correct 11 ms 27996 KB Output is correct
61 Correct 57 ms 32852 KB Output is correct
62 Correct 91 ms 42068 KB Output is correct
63 Correct 394 ms 158292 KB Output is correct
64 Correct 489 ms 156260 KB Output is correct
65 Correct 512 ms 156240 KB Output is correct
66 Correct 566 ms 156880 KB Output is correct
67 Correct 731 ms 162388 KB Output is correct
68 Correct 454 ms 156496 KB Output is correct
69 Correct 520 ms 161512 KB Output is correct
70 Correct 536 ms 162808 KB Output is correct
71 Correct 487 ms 157428 KB Output is correct
72 Correct 525 ms 156340 KB Output is correct
73 Correct 587 ms 156892 KB Output is correct
74 Correct 401 ms 157320 KB Output is correct
75 Correct 503 ms 156524 KB Output is correct