Submission #1050431

# Submission time Handle Problem Language Result Execution time Memory
1050431 2024-08-09T09:26:19 Z ksun69(#11101) Hamburg Steak (JOI20_hamburg) C++17
21 / 100
3000 ms 113996 KB
#include <bits/stdc++.h>
using namespace std;

namespace std {

template<class Fun>
class y_combinator_result {
	Fun fun_;
public:
	template<class T>
	explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}

	template<class ...Args>
	decltype(auto) operator()(Args &&...args) {
		return fun_(std::ref(*this), std::forward<Args>(args)...);
	}
};

template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
	return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

} // namespace std

int main(){
	ios_base::sync_with_stdio(false), cin.tie(nullptr);
	int N, K;
	cin >> N >> K;
	vector<vector<int> > S(N, vector<int>(4));
	for(int i = 0; i < N; i++){
		for(int j = 0; j < 4; j++){
			cin >> S[i][j];
		}
	}
	vector<int> x_values, y_values;
	for(int i = 0; i < N; i++){
		x_values.push_back(S[i][0]);
		x_values.push_back(S[i][2]);
		y_values.push_back(S[i][1]);
		y_values.push_back(S[i][3]);
	}
	sort(x_values.begin(), x_values.end());
	sort(y_values.begin(), y_values.end());
	x_values.erase(unique(x_values.begin(), x_values.end()), x_values.end());
	y_values.erase(unique(y_values.begin(), y_values.end()), y_values.end());

	auto get_compress_x = [&](int x){
		return int(lower_bound(x_values.begin(), x_values.end(), x) - x_values.begin());
	};
	auto get_compress_y = [&](int y){
		return int(lower_bound(y_values.begin(), y_values.end(), y) - y_values.begin());
	};

	for(int i = 0; i < N; i++){
		S[i][0] = get_compress_x(S[i][0]);
		S[i][1] = get_compress_y(S[i][1]);
		S[i][2] = get_compress_x(S[i][2]);
		S[i][3] = get_compress_y(S[i][3]);
	}

	// L D R U
	vector<pair<int,int> > bad = {{-1, -1}};
	auto sol = y_combinator([&](auto self, vector<vector<int>> s, int k) -> vector<pair<int,int> > {
		if(s.size() == 0) return vector<pair<int,int> >(k, {0, 0});
		if(k == 0) return bad;
		vector<int> bounds {int(-1e9), int(-1e9), int(1e9), int(1e9)};
		for(int i = 0; i < (int)s.size(); i++){
			bounds[0] = max(bounds[0], s[i][0]);
			bounds[1] = max(bounds[1], s[i][1]);
			bounds[2] = min(bounds[2], s[i][2]);
			bounds[3] = min(bounds[3], s[i][3]);
		}
		for(int x : {bounds[0], bounds[2]}){
			for(int y : {bounds[1], bounds[3]}){
				vector<vector<int> > nxt;
				for(int i = 0; i < (int)s.size(); i++){
					if(!(s[i][0] <= x && s[i][2] >= x && s[i][1] <= y && s[i][3] >= y)) nxt.push_back(s[i]);
				}
				auto res = self(nxt, k-1);
				if(res != bad) {
					res.push_back({x, y});
					return res;
				}
			}
		}
		return bad;
	})(S, K);
	if(sol != bad){
		for(int i = 0; i < K; i++){
			cout << x_values[sol[i].first] << ' ' << y_values[sol[i].second] << '\n';
		}
		exit(0);
	}
	assert(K == 4);

	vector<int> bounds {int(-1e9), int(-1e9), int(1e9), int(1e9)};
	for(int i = 0; i < N; i++){
		bounds[0] = max(bounds[0], S[i][0]);
		bounds[1] = max(bounds[1], S[i][1]);
		bounds[2] = min(bounds[2], S[i][2]);
		bounds[3] = min(bounds[3], S[i][3]);
	}
	swap(bounds[0], bounds[2]);
	swap(bounds[1], bounds[3]);
	assert(bounds[0] < bounds[2] && bounds[1] < bounds[3]);
	for(int i = 0; i < N; i++){
		S[i][0] = max(S[i][0], bounds[0]);
		S[i][1] = max(S[i][1], bounds[1]);
		S[i][2] = min(S[i][2], bounds[2]);
		S[i][3] = min(S[i][3], bounds[3]);
	}
	vector<vector<vector<int> > > constraints(16);
	for(int i = 0; i < N; i++){
		int mask = 0;
		for(int j = 0; j < 4; j++){
			if(S[i][j] == bounds[j]) mask |= (1 << j);
		}
		constraints[mask].push_back(S[i]);
	}
	assert(constraints[0].empty());
	vector<pair<int,int> > sides(4);
	for(int b = 0; b < 4; b++){
		pair<int,int> lr = {(b & 1) ? bounds[0] : bounds[1], (b & 1) ? bounds[2] : bounds[3]};
		for(auto v : constraints[1 << b]){
			lr.first = max(lr.first, v[(b & 1) ^ 1]);
			lr.second = min(lr.second, v[(b & 1) ^ 3]);
		}
		sides[b] = lr;
	}

	auto remove_containing_rectangles = [&](vector<vector<int> > &rectangles){
		sort(rectangles.begin(), rectangles.end(), [&](vector<int> a, vector<int> b){
			return pair<int,int>(a[2] - a[0], a[3] - a[1]) < pair<int,int>(b[2] - b[0], b[3] - b[1]);
		});
		vector<vector<int> > stk;
		for(auto v : rectangles){
			if(!stk.empty() && stk.back()[0] >= v[0] && stk.back()[1] >= v[1] && stk.back()[2] <= v[2] && stk.back()[3] <= v[3]){
				continue;
			}
			stk.push_back(v);
		}
		rectangles = stk;
	};
	for(int msk = 0; msk < (1 << 4); msk++){
		remove_containing_rectangles(constraints[msk]);
	}
	vector<pair<int,int> > x_constraints, y_constraints;
	for(vector<int> c : constraints[(1 << 1) ^ (1 << 3)]){
		x_constraints.push_back({c[0], c[2]});
	}
	for(vector<int> c : constraints[(1 << 2) ^ (1 << 0)]){
		y_constraints.push_back({c[1], c[3]});
	}

	auto generate_map = [&](vector<pair<int,int> > constraints, int L, pair<int,int> l_bounds, pair<int,int> r_bounds) -> vector<pair<int,int> > {
		vector<vector<pair<int,int> > > ins(L);
		vector<vector<pair<int,int> > > rem(L);
		multiset<int> lb;
		multiset<int> ub;
		lb.insert(r_bounds.first);
		ub.insert(r_bounds.second);
		for(auto [l, r] : constraints){
			rem[l].push_back({l, r});
			ins[r].push_back({l, r});
			lb.insert(l);
			ub.insert(r);
		}
		vector<pair<int,int> > res(L);
		for(int i = 0; i < L; i++){
			for(auto [l, r] : rem[i]){
				ub.erase(ub.find(r));
				lb.erase(lb.find(l));
			}
			{
				int l = *lb.rbegin();
				int r = *ub.begin();
				if(l <= r && i >= l_bounds.first && i <= l_bounds.second){
					res[i] = {l, r};
				} else {
					res[i] = {-1, -1};
				}
			}
			for(auto [l, r] : ins[i]){
				ub.insert(r);
				lb.insert(l);
			}
		}
		for(auto [l, r] : constraints){
			lb.erase(lb.find(l));
			ub.erase(ub.find(r));
		}
		return res;
	};

	int X = x_values.size();
	int Y = y_values.size();
	vector<pair<int,int> > x_map = generate_map(x_constraints, X, sides[1], sides[3]);
	vector<pair<int,int> > y_map = generate_map(y_constraints, Y, sides[0], sides[2]);
	vector<pair<int,int> > y_map_flip = generate_map(y_constraints, Y, sides[2], sides[0]);
	int max_y_min = -1;
	for(int i = 0; i < Y; i++){
		if(y_map[i].first != -1){
			max_y_min = max(max_y_min, min(i, y_map[i].first));
		}
		if(y_map_flip[i].first != -1){
			max_y_min = max(max_y_min, min(i, y_map_flip[i].first));
		}
	}
	vector<int> y0_x3_max(Y);
	int c3 = 0;
	for(int y = 0; y < Y; y++){
		while(c3 < constraints[(1 << 0) ^ (1 << 3)].size() && constraints[(1 << 0) ^ (1 << 3)][c3][1] <= y){
			c3++;
		}
		y0_x3_max[y] = (c3 == constraints[(1 << 0) ^ (1 << 3)].size() ? bounds[2] : constraints[(1 << 0) ^ (1 << 3)][c3][2]);
	}
	vector<int> y2_x3_min(Y);
	c3 = 0;
	for(int y = 0; y < Y; y++){
		while(c3 < constraints[(1 << 2) ^ (1 << 3)].size() && constraints[(1 << 2) ^ (1 << 3)][c3][1] <= y){
			c3++;
		}
		y2_x3_min[y] = (c3 == constraints[(1 << 2) ^ (1 << 3)].size() ? bounds[0] : constraints[(1 << 2) ^ (1 << 3)][c3][0]);
	}

	int c0 = 0;
	int c2 = (int)constraints[(1 << 2) ^ (1 << 1)].size();
	vector<pair<int,int> > ans;
	for(int x = 0; x < X; x++){
		while(c0 < constraints[(1 << 0) ^ (1 << 1)].size() && constraints[(1 << 0) ^ (1 << 1)][c0][2] < x){
			c0++;
		}
		int y0max = (c0 == 0 ? bounds[3] : constraints[(1 << 0) ^ (1 << 1)][c0-1][3]);
		while(c2 > 0 && constraints[(1 << 2) ^ (1 << 1)][c2-1][0] <= x){
			c2--;
		}
		int y2max = (c2 == 0 ? bounds[3] : constraints[(1 << 2) ^ (1 << 1)][c2-1][3]);
		vector<pair<int,int> > y_pairs;
		{
			int y0 = min(y0max, max_y_min);
			if(y0 != -1){
				int y2 = min(y2max, y_map[y0].second);
				if(y_map[y0].first != -1 && y2 >= y0 && y2 >= y_map[y0].first) y_pairs.push_back({y0, y2});
			}
		}
		{
			int y2 = min(y2max, max_y_min);
			int y0 = min(y0max, y_map_flip[y2].second);
			if(y_map_flip[y2].first != -1 && y0 >= y2 && y0 >= y_map_flip[y2].first) y_pairs.push_back({y0, y2});
		}
		for(auto [y0, y2] : y_pairs){
			int xl = x_map[x].first;
			int xr = x_map[x].second;
			if(xl == -1) continue;
			assert(y0 >= sides[0].first && y0 <= sides[0].second);
			xl = max(xl, y2_x3_min[y2]);
			xr = min(xr, y0_x3_max[y0]);
			if(xl <= xr){
				ans = {{x, bounds[1]}, {xl, bounds[3]}, {bounds[0], y0}, {bounds[2], y2}};
			}
		}
	}
	if(ans.empty()){
		assert(false);
	}
	for(int m1 = 0; m1 < 16; m1++){
		for(auto cons : constraints[m1]){
			bool found = false;
			for(auto [x, y] : ans){
				if(cons[0] <= x && x <= cons[2] && cons[1] <= y && y <= cons[3]){
					found = true;
				}
			}
			if(!found) {
				cerr << m1 << ' ' << cons[0] << ' ' << cons[1] << ' ' << cons[2] << ' ' << cons[3] << '\n';
				assert(false);
			}
		}
	}
	for(auto cons : S){
		bool found = false;
		for(auto [x, y] : ans){
			if(cons[0] <= x && x <= cons[2] && cons[1] <= y && y <= cons[3]){
				found = true;
			}
		}
		if(!found) {
			cerr << cons[0] << ' ' << cons[1] << ' ' << cons[2] << ' ' << cons[3] << '\n';
			cerr << "bad ? " << '\n';
			assert(false);
		}
	}
	for(auto [x, y] : ans){
		cout << x_values[x] << ' ' << y_values[y] << '\n';
	}
}

Compilation message

hamburg.cpp: In function 'int main()':
hamburg.cpp:213:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  213 |   while(c3 < constraints[(1 << 0) ^ (1 << 3)].size() && constraints[(1 << 0) ^ (1 << 3)][c3][1] <= y){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:216:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  216 |   y0_x3_max[y] = (c3 == constraints[(1 << 0) ^ (1 << 3)].size() ? bounds[2] : constraints[(1 << 0) ^ (1 << 3)][c3][2]);
      |                   ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:221:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  221 |   while(c3 < constraints[(1 << 2) ^ (1 << 3)].size() && constraints[(1 << 2) ^ (1 << 3)][c3][1] <= y){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:224:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  224 |   y2_x3_min[y] = (c3 == constraints[(1 << 2) ^ (1 << 3)].size() ? bounds[0] : constraints[(1 << 2) ^ (1 << 3)][c3][0]);
      |                   ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:231:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  231 |   while(c0 < constraints[(1 << 0) ^ (1 << 1)].size() && constraints[(1 << 0) ^ (1 << 1)][c0][2] < x){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 2 ms 904 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 3 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 2 ms 600 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 5 ms 1116 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 3 ms 860 KB Output is correct
12 Correct 2 ms 856 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 600 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 600 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 14 ms 1372 KB Output is correct
9 Correct 3 ms 860 KB Output is correct
10 Correct 10 ms 1132 KB Output is correct
11 Correct 15 ms 1372 KB Output is correct
12 Correct 5 ms 1116 KB Output is correct
13 Correct 2 ms 876 KB Output is correct
14 Correct 14 ms 1112 KB Output is correct
15 Correct 2 ms 860 KB Output is correct
16 Correct 4 ms 860 KB Output is correct
17 Correct 16 ms 1312 KB Output is correct
18 Correct 5 ms 860 KB Output is correct
19 Correct 2 ms 1116 KB Output is correct
20 Correct 22 ms 1372 KB Output is correct
21 Correct 4 ms 1116 KB Output is correct
22 Correct 6 ms 1372 KB Output is correct
23 Correct 25 ms 1416 KB Output is correct
24 Correct 9 ms 1372 KB Output is correct
25 Correct 11 ms 1356 KB Output is correct
26 Correct 12 ms 1372 KB Output is correct
27 Correct 16 ms 1372 KB Output is correct
28 Correct 7 ms 1372 KB Output is correct
29 Correct 9 ms 1332 KB Output is correct
30 Correct 7 ms 1368 KB Output is correct
31 Correct 15 ms 1368 KB Output is correct
32 Correct 17 ms 1116 KB Output is correct
33 Correct 16 ms 1116 KB Output is correct
34 Correct 14 ms 1244 KB Output is correct
35 Correct 44 ms 1372 KB Output is correct
36 Correct 15 ms 1296 KB Output is correct
37 Correct 34 ms 1524 KB Output is correct
38 Correct 38 ms 1496 KB Output is correct
39 Correct 21 ms 1316 KB Output is correct
40 Correct 18 ms 1116 KB Output is correct
41 Correct 18 ms 1364 KB Output is correct
42 Correct 26 ms 1408 KB Output is correct
43 Correct 20 ms 1448 KB Output is correct
44 Correct 35 ms 1432 KB Output is correct
45 Correct 11 ms 1464 KB Output is correct
46 Correct 25 ms 1372 KB Output is correct
47 Correct 24 ms 1368 KB Output is correct
48 Correct 37 ms 1468 KB Output is correct
49 Correct 27 ms 1464 KB Output is correct
50 Correct 19 ms 1380 KB Output is correct
51 Correct 36 ms 1484 KB Output is correct
52 Correct 23 ms 1220 KB Output is correct
53 Correct 22 ms 1372 KB Output is correct
54 Correct 34 ms 1456 KB Output is correct
55 Correct 16 ms 1076 KB Output is correct
56 Correct 10 ms 1112 KB Output is correct
57 Correct 13 ms 1168 KB Output is correct
58 Correct 11 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 204 ms 25252 KB Output is correct
6 Correct 229 ms 25448 KB Output is correct
7 Correct 196 ms 25444 KB Output is correct
8 Correct 194 ms 25576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 604 KB Output is correct
2 Correct 2 ms 904 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 3 ms 860 KB Output is correct
5 Correct 216 ms 36424 KB Output is correct
6 Correct 222 ms 50016 KB Output is correct
7 Correct 213 ms 34896 KB Output is correct
8 Correct 240 ms 59484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 860 KB Output is correct
2 Correct 2 ms 600 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 5 ms 1116 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 3 ms 860 KB Output is correct
12 Correct 2 ms 856 KB Output is correct
13 Correct 215 ms 42108 KB Output is correct
14 Correct 202 ms 41892 KB Output is correct
15 Correct 212 ms 44128 KB Output is correct
16 Correct 199 ms 36772 KB Output is correct
17 Correct 210 ms 39776 KB Output is correct
18 Correct 198 ms 33448 KB Output is correct
19 Correct 202 ms 41824 KB Output is correct
20 Correct 629 ms 85744 KB Output is correct
21 Correct 230 ms 51868 KB Output is correct
22 Correct 318 ms 81056 KB Output is correct
23 Correct 472 ms 79968 KB Output is correct
24 Correct 352 ms 73608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 600 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 600 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 14 ms 1372 KB Output is correct
9 Correct 3 ms 860 KB Output is correct
10 Correct 10 ms 1132 KB Output is correct
11 Correct 15 ms 1372 KB Output is correct
12 Correct 5 ms 1116 KB Output is correct
13 Correct 2 ms 876 KB Output is correct
14 Correct 14 ms 1112 KB Output is correct
15 Correct 2 ms 860 KB Output is correct
16 Correct 4 ms 860 KB Output is correct
17 Correct 16 ms 1312 KB Output is correct
18 Correct 5 ms 860 KB Output is correct
19 Correct 2 ms 1116 KB Output is correct
20 Correct 22 ms 1372 KB Output is correct
21 Correct 4 ms 1116 KB Output is correct
22 Correct 6 ms 1372 KB Output is correct
23 Correct 25 ms 1416 KB Output is correct
24 Correct 9 ms 1372 KB Output is correct
25 Correct 11 ms 1356 KB Output is correct
26 Correct 12 ms 1372 KB Output is correct
27 Correct 16 ms 1372 KB Output is correct
28 Correct 7 ms 1372 KB Output is correct
29 Correct 9 ms 1332 KB Output is correct
30 Correct 7 ms 1368 KB Output is correct
31 Correct 15 ms 1368 KB Output is correct
32 Correct 17 ms 1116 KB Output is correct
33 Correct 16 ms 1116 KB Output is correct
34 Correct 14 ms 1244 KB Output is correct
35 Correct 44 ms 1372 KB Output is correct
36 Correct 15 ms 1296 KB Output is correct
37 Correct 34 ms 1524 KB Output is correct
38 Correct 38 ms 1496 KB Output is correct
39 Correct 21 ms 1316 KB Output is correct
40 Correct 18 ms 1116 KB Output is correct
41 Correct 18 ms 1364 KB Output is correct
42 Correct 26 ms 1408 KB Output is correct
43 Correct 20 ms 1448 KB Output is correct
44 Correct 35 ms 1432 KB Output is correct
45 Correct 11 ms 1464 KB Output is correct
46 Correct 25 ms 1372 KB Output is correct
47 Correct 24 ms 1368 KB Output is correct
48 Correct 37 ms 1468 KB Output is correct
49 Correct 27 ms 1464 KB Output is correct
50 Correct 19 ms 1380 KB Output is correct
51 Correct 36 ms 1484 KB Output is correct
52 Correct 23 ms 1220 KB Output is correct
53 Correct 22 ms 1372 KB Output is correct
54 Correct 34 ms 1456 KB Output is correct
55 Correct 16 ms 1076 KB Output is correct
56 Correct 10 ms 1112 KB Output is correct
57 Correct 13 ms 1168 KB Output is correct
58 Correct 11 ms 1116 KB Output is correct
59 Correct 221 ms 46940 KB Output is correct
60 Correct 211 ms 48036 KB Output is correct
61 Correct 230 ms 42336 KB Output is correct
62 Correct 205 ms 44972 KB Output is correct
63 Correct 214 ms 43168 KB Output is correct
64 Correct 217 ms 30308 KB Output is correct
65 Correct 219 ms 52056 KB Output is correct
66 Correct 1304 ms 91560 KB Output is correct
67 Correct 462 ms 81184 KB Output is correct
68 Correct 1942 ms 105432 KB Output is correct
69 Correct 2504 ms 113996 KB Output is correct
70 Correct 1639 ms 104020 KB Output is correct
71 Correct 223 ms 61084 KB Output is correct
72 Correct 2611 ms 111024 KB Output is correct
73 Correct 294 ms 70244 KB Output is correct
74 Correct 854 ms 111904 KB Output is correct
75 Correct 1540 ms 95532 KB Output is correct
76 Correct 963 ms 107168 KB Output is correct
77 Correct 286 ms 59480 KB Output is correct
78 Execution timed out 3047 ms 113048 KB Time limit exceeded
79 Halted 0 ms 0 KB -