Submission #1050327

# Submission time Handle Problem Language Result Execution time Memory
1050327 2024-08-09T08:46:45 Z ksun69(#11101) Hamburg Steak (JOI20_hamburg) C++17
15 / 100
641 ms 83096 KB
#include <bits/stdc++.h>
using namespace std;

namespace std {

template<class Fun>
class y_combinator_result {
	Fun fun_;
public:
	template<class T>
	explicit y_combinator_result(T &&fun): fun_(std::forward<T>(fun)) {}

	template<class ...Args>
	decltype(auto) operator()(Args &&...args) {
		return fun_(std::ref(*this), std::forward<Args>(args)...);
	}
};

template<class Fun>
decltype(auto) y_combinator(Fun &&fun) {
	return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun));
}

} // namespace std

int main(){
	ios_base::sync_with_stdio(false), cin.tie(nullptr);
	int N, K;
	cin >> N >> K;
	vector<vector<int> > S(N, vector<int>(4));
	for(int i = 0; i < N; i++){
		for(int j = 0; j < 4; j++){
			cin >> S[i][j];
		}
	}
	vector<int> x_values, y_values;
	for(int i = 0; i < N; i++){
		x_values.push_back(S[i][0]);
		x_values.push_back(S[i][2]);
		y_values.push_back(S[i][1]);
		y_values.push_back(S[i][3]);
	}
	sort(x_values.begin(), x_values.end());
	sort(y_values.begin(), y_values.end());
	x_values.erase(unique(x_values.begin(), x_values.end()), x_values.end());
	y_values.erase(unique(y_values.begin(), y_values.end()), y_values.end());

	auto get_compress_x = [&](int x){
		return int(lower_bound(x_values.begin(), x_values.end(), x) - x_values.begin());
	};
	auto get_compress_y = [&](int y){
		return int(lower_bound(y_values.begin(), y_values.end(), y) - y_values.begin());
	};

	for(int i = 0; i < N; i++){
		S[i][0] = get_compress_x(S[i][0]);
		S[i][1] = get_compress_y(S[i][1]);
		S[i][2] = get_compress_x(S[i][2]);
		S[i][3] = get_compress_y(S[i][3]);
	}

	// L D R U
	vector<pair<int,int> > bad = {{-1, -1}};
	auto sol = y_combinator([&](auto self, vector<vector<int>> s, int k) -> vector<pair<int,int> > {
		if(s.size() == 0) return vector<pair<int,int> >(k, {0, 0});
		if(k == 0) return bad;
		vector<int> bounds {int(-1e9), int(-1e9), int(1e9), int(1e9)};
		for(int i = 0; i < (int)s.size(); i++){
			bounds[0] = max(bounds[0], s[i][0]);
			bounds[1] = max(bounds[1], s[i][1]);
			bounds[2] = min(bounds[2], s[i][2]);
			bounds[3] = min(bounds[3], s[i][3]);
		}
		for(int x : {bounds[0], bounds[2]}){
			for(int y : {bounds[1], bounds[3]}){
				vector<vector<int> > nxt;
				for(int i = 0; i < (int)s.size(); i++){
					if(!(s[i][0] <= x && s[i][2] >= x && s[i][1] <= y && s[i][3] >= y)) nxt.push_back(s[i]);
				}
				auto res = self(nxt, k-1);
				if(res != bad) {
					res.push_back({x, y});
					return res;
				}
			}
		}
		return bad;
	})(S, K);
	if(sol != bad){
		for(int i = 0; i < K; i++){
			cout << x_values[sol[i].first] << ' ' << y_values[sol[i].second] << '\n';
		}
		exit(0);
	}
	assert(K == 4);

	vector<int> bounds {int(-1e9), int(-1e9), int(1e9), int(1e9)};
	for(int i = 0; i < N; i++){
		bounds[0] = max(bounds[0], S[i][0]);
		bounds[1] = max(bounds[1], S[i][1]);
		bounds[2] = min(bounds[2], S[i][2]);
		bounds[3] = min(bounds[3], S[i][3]);
	}
	swap(bounds[0], bounds[2]);
	swap(bounds[1], bounds[3]);
	int lx = bounds[0];
	int rx = bounds[2];
	int ly = bounds[1];
	int ry = bounds[3];
	assert(lx < rx && ly < ry);
	for(int i = 0; i < N; i++){
		S[i][0] = max(S[i][0], lx);
		S[i][1] = max(S[i][1], ly);
		S[i][2] = min(S[i][2], rx);
		S[i][3] = min(S[i][3], ry);
	}
	vector<vector<vector<int> > > constraints(16);
	for(int i = 0; i < N; i++){
		int mask = 0;
		for(int j = 0; j < 4; j++){
			if(S[i][j] == bounds[j]) mask |= (1 << j);
		}
		constraints[mask].push_back(S[i]);
	}
	assert(constraints[0].size() == 0);
	vector<pair<int,int> > sides(4);
	for(int b = 0; b < 4; b++){
		assert(!constraints[1 << b].empty());
		pair<int,int> lr = {int(-1e9), int(1e9)};
		for(auto v : constraints[1 << b]){
			lr.first = max(lr.first, v[(b & 1) ^ 1]);
			lr.second = min(lr.second, v[(b & 1) ^ 3]);
		}
		sides[b] = lr;
	}

	auto remove_contained_rectangles = [&](vector<vector<int> > &rectangles){
		sort(rectangles.begin(), rectangles.end(), [&](vector<int> a, vector<int> b){
			return pair<int,int>(a[2] - a[0], a[3] - a[1]) < pair<int,int>(b[2] - b[0], b[3] - b[1]);
		});
		vector<vector<int> > stk;
		for(auto v : rectangles){
			while(!stk.empty() && stk.back()[0] >= v[0] && stk.back()[1] >= v[1] && stk.back()[2] <= v[2] && stk.back()[3] <= v[3]){
				stk.pop_back();
			}
			stk.push_back(v);
		}
		rectangles = stk;
	};
	for(int msk = 0; msk < (1 << 4); msk++){
		remove_contained_rectangles(constraints[msk]);
	}
	vector<pair<int,int> > x_constraints, y_constraints;
	for(vector<int> c : constraints[(1 << 1) ^ (1 << 3)]){
		x_constraints.push_back({c[0], c[2]});
	}
	for(vector<int> c : constraints[(1 << 2) ^ (1 << 0)]){
		y_constraints.push_back({c[1], c[3]});
	}

	auto generate_map = [&](vector<pair<int,int> > constraints, int L, pair<int,int> l_bounds, pair<int,int> bounds) -> vector<pair<int,int> > {
		vector<vector<pair<int,int> > > ins(L);
		vector<vector<pair<int,int> > > rem(L);
		multiset<int> lb;
		multiset<int> ub;
		ub.insert(bounds.second);
		lb.insert(bounds.first);
		for(auto [l, r] : constraints){
			rem[l].push_back({l, r});
			ins[r].push_back({l, r});
			lb.insert(l);
			ub.insert(r);
		}
		vector<pair<int,int> > res(L);
		for(int i = 0; i < L; i++){
			for(auto [l, r] : rem[i]){
				ub.erase(ub.find(r));
				lb.erase(lb.find(l));
			}
			{
				int l = *lb.rbegin();
				int r = *ub.begin();
				if(l <= r && i >= l_bounds.first && i <= l_bounds.second){
					res[i] = {l, r};
				} else {
					res[i] = {-1, -1};
				}
			}
			for(auto [l, r] : ins[i]){
				ub.insert(r);
				lb.insert(l);
			}
		}
		return res;
	};

	int X = x_values.size();
	int Y = y_values.size();
	vector<pair<int,int> > x_map = generate_map(x_constraints, X, sides[1], sides[3]);
	vector<pair<int,int> > y_map = generate_map(y_constraints, Y, sides[0], sides[2]);
	int max_y_min = -1;
	for(int i = 0; i < Y; i++){
		if(y_map[i].first != -1){
			max_y_min = max(max_y_min, min(i, y_map[i].first));
		}
	}
	vector<int> y0_x3_max(Y);
	int c3 = 0;
	for(int y = 0; y < Y; y++){
		while(c3 < constraints[(1 << 0) ^ (1 << 3)].size() && constraints[(1 << 0) ^ (1 << 3)][c3][1] <= y){
			c3++;
		}
		y0_x3_max[y] = (c3 == constraints[(1 << 0) ^ (1 << 3)].size() ? bounds[2] : constraints[(1 << 0) ^ (1 << 3)][c3][2]);
	}
	vector<int> y2_x3_min(Y);
	c3 = 0;
	for(int y = 0; y < Y; y++){
		while(c3 < constraints[(1 << 2) ^ (1 << 3)].size() && constraints[(1 << 2) ^ (1 << 3)][c3][1] <= y){
			c3++;
		}
		y2_x3_min[y] = (c3 == constraints[(1 << 2) ^ (1 << 3)].size() ? bounds[0] : constraints[(1 << 2) ^ (1 << 3)][c3][0]);
	}

	int c0 = 0;
	int c2 = (int)constraints[(1 << 2) ^ (1 << 1)].size();
	vector<pair<int,int> > ans;
	for(int x = 0; x < X; x++){
		while(c0 < constraints[(1 << 0) ^ (1 << 1)].size() && constraints[(1 << 0) ^ (1 << 1)][c0][2] < x){
			c0++;
		}
		int y0max = (c0 == 0 ? bounds[3] : constraints[(1 << 0) ^ (1 << 1)][c0-1][3]);
		while(c2 > 0 && constraints[(1 << 2) ^ (1 << 1)][c2-1][0] <= x){
			c2--;
		}
		int y2max = (c2 == 0 ? bounds[3] : constraints[(1 << 2) ^ (1 << 1)][c2-1][3]);
		vector<pair<int,int> > y_pairs;
		{
			int y0 = min(y0max, max_y_min);
			int y2 = min(y2max, y_map[y0].second);
			if(y_map[y0].first != -1 && y2 >= y0) y_pairs.push_back({y0, y2});
		}
		{
			int y2 = min(y2max, max_y_min);
			int y0 = min(y0max, y_map[y2].second);
			if(y_map[y2].first != -1 && y0 >= y2) y_pairs.push_back({y0, y2});
		}
		for(auto [y0, y2] : y_pairs){
			int xl = x_map[x].first;
			int xr = x_map[x].second;
			if(xl < 0) continue;
			xl = max(xl, y2_x3_min[y2]);
			xr = min(xr, y0_x3_max[y0]);
			if(xl <= xr){
				ans = {{x, bounds[1]}, {xl, bounds[3]}, {bounds[0], y0}, {bounds[2], y2}};
			}
		}
	}
	if(ans.empty()){
		assert(false);
	}
	for(int m1 = 0; m1 < (1 << 4); m1++){
		for(auto cons : constraints[m1]){
			bool found = false;
			for(auto [x, y] : ans){
				if(cons[0] <= x && x <= cons[2] && cons[1] <= y && y <= cons[3]){
					found = true;
				}
			}
			if(m1 == 2 && !found) assert(false);
		}
	}
	for(auto [x, y] : ans){
		cout << x_values[x] << ' ' << y_values[y] << '\n';
	}
}

Compilation message

hamburg.cpp: In function 'int main()':
hamburg.cpp:210:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  210 |   while(c3 < constraints[(1 << 0) ^ (1 << 3)].size() && constraints[(1 << 0) ^ (1 << 3)][c3][1] <= y){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:213:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  213 |   y0_x3_max[y] = (c3 == constraints[(1 << 0) ^ (1 << 3)].size() ? bounds[2] : constraints[(1 << 0) ^ (1 << 3)][c3][2]);
      |                   ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:218:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  218 |   while(c3 < constraints[(1 << 2) ^ (1 << 3)].size() && constraints[(1 << 2) ^ (1 << 3)][c3][1] <= y){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:221:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  221 |   y2_x3_min[y] = (c3 == constraints[(1 << 2) ^ (1 << 3)].size() ? bounds[0] : constraints[(1 << 2) ^ (1 << 3)][c3][0]);
      |                   ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hamburg.cpp:228:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  228 |   while(c0 < constraints[(1 << 0) ^ (1 << 1)].size() && constraints[(1 << 0) ^ (1 << 1)][c0][2] < x){
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 600 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 860 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 2 ms 600 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 5 ms 1116 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 4 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 604 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 612 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 15 ms 1372 KB Output is correct
9 Correct 3 ms 860 KB Output is correct
10 Correct 9 ms 1152 KB Output is correct
11 Correct 15 ms 1448 KB Output is correct
12 Correct 7 ms 1116 KB Output is correct
13 Correct 2 ms 860 KB Output is correct
14 Incorrect 13 ms 1332 KB Output isn't correct
15 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 604 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 1 ms 640 KB Output is correct
5 Correct 199 ms 25420 KB Output is correct
6 Correct 198 ms 25448 KB Output is correct
7 Correct 202 ms 25444 KB Output is correct
8 Correct 194 ms 25432 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 600 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 208 ms 36240 KB Output is correct
6 Correct 249 ms 50088 KB Output is correct
7 Correct 197 ms 34964 KB Output is correct
8 Correct 256 ms 61020 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 860 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 2 ms 600 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 1 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 5 ms 1116 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 3 ms 1116 KB Output is correct
11 Correct 4 ms 860 KB Output is correct
12 Correct 2 ms 860 KB Output is correct
13 Correct 207 ms 42576 KB Output is correct
14 Correct 217 ms 41828 KB Output is correct
15 Correct 218 ms 44204 KB Output is correct
16 Correct 206 ms 35424 KB Output is correct
17 Correct 219 ms 39776 KB Output is correct
18 Correct 205 ms 33284 KB Output is correct
19 Correct 226 ms 43176 KB Output is correct
20 Correct 641 ms 81300 KB Output is correct
21 Correct 238 ms 51612 KB Output is correct
22 Correct 323 ms 83096 KB Output is correct
23 Correct 510 ms 81688 KB Output is correct
24 Correct 354 ms 73636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 604 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 604 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 612 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 15 ms 1372 KB Output is correct
9 Correct 3 ms 860 KB Output is correct
10 Correct 9 ms 1152 KB Output is correct
11 Correct 15 ms 1448 KB Output is correct
12 Correct 7 ms 1116 KB Output is correct
13 Correct 2 ms 860 KB Output is correct
14 Incorrect 13 ms 1332 KB Output isn't correct
15 Halted 0 ms 0 KB -