Submission #1050058

# Submission time Handle Problem Language Result Execution time Memory
1050058 2024-08-09T07:04:52 Z shiomusubi496 Uplifting Excursion (BOI22_vault) C++17
50 / 100
5000 ms 105140 KB
#include <bits/stdc++.h>

#define rep(i, n) for (int i = 0; i < (int)(n); ++i)
#define rep2(i, a, b) for (int i = (int)(a); i < (int)(b); ++i)
#define rrep(i, n) for (int i = (int)(n) - 1; i >= 0; --i)
#define rrep2(i, a, b) for (int i = (int)(b) - 1; i >= (int)(a); --i)
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)

using namespace std;

using ll = long long;

template<class T, class U> bool chmin(T& a, const U& b) { return a > b ? a = b, true : false; }
template<class T, class U> bool chmax(T& a, const U& b) { return a < b ? a = b, true : false; }

using namespace std;

constexpr ll inf = 1e18;

ll gcd(ll a, ll b) {
    a = abs(a); b = abs(b);
    while (b) {
        a %= b;
        swap(a, b);
    }
    return a;
}

int main() {
    int M; cin >> M;
    ll L; cin >> L;
    vector<ll> A(2 * M + 1);
    rep (i, 2 * M + 1) cin >> A[i];
    if (L < 0) {
        reverse(all(A));
        L = -L;
    }
    ll sml = 0, smr = 0;
    rep (i, 2 * M + 1) {
        if (i < M) sml += A[i] * (i - M);
        if (i > M) smr += A[i] * (i - M);
    }
    if (L < sml || smr < L) {
        puts("impossible");
        return 0;
    }
    vector<pair<int, ll>> B;
    vector<pair<int, ll>> C;
    rep (i, 2 * M + 1) {
        if (i == M) continue;
        if (A[i] == 0) continue;
        if (A[i] <= M) B.emplace_back(i - M, A[i]);
        else C.emplace_back(i - M, A[i]);
    }
    sml = smr = 0;
    for (auto [x, y] : B) {
        if (x < 0) sml += x * y;
        else smr += x * y;
    }
    auto calc_dp = [](vector<pair<int, ll>> B) -> vector<ll> {
        ll sml = 0, smr = 0;
        for (auto [x, y] : B) {
            if (x < 0) sml += x * y;
            else smr += x * y;
        }
        vector<ll> dp(smr - sml + 1, -inf);
        dp[0 - sml] = 0;
        for (auto [x, y] : B) {
            int ax = abs(x);
            vector<ll> memo;
            vector<ll> res;
            deque<int> st;
            rep (i, ax) {
                // mod x ごとにスライド最大値の形になる
                memo.clear();
                for (int j = i; j <= smr - sml; j += ax) {
                    memo.push_back(dp[j]);
                }
                res.assign(memo.size(), -inf);
                st.clear();
                if (x > 0) {
                    rep (i, memo.size()) memo[i] -= i;
                    rep (i, res.size()) {
                        while (!st.empty() && st.front() < i - y) st.pop_front();
                        while (!st.empty() && memo[st.back()] < memo[i]) st.pop_back();
                        st.push_back(i);
                        res[i] = memo[st.front()] + i;
                    }
                }
                else {
                    rep (i, memo.size()) memo[i] += i;
                    rrep (i, res.size()) {
                        while (!st.empty() && st.front() > i + y) st.pop_front();
                        while (!st.empty() && memo[st.back()] < memo[i]) st.pop_back();
                        st.push_back(i);
                        res[i] = memo[st.front()] - i;
                    }
                }
                rep (j, res.size()) dp[j * ax + i] = res[j];
            }
        }
        return dp;
    };
    auto dp = calc_dp(B);
    if (C.empty()) {
        if (dp[L - sml] >= 0) {
            cout << dp[L - sml] + A[M] << endl;
        }
        else {
            puts("impossible");
        }
        return 0;
    }
    if (C.size() <= 1) {
        auto [x, y] = C[0];
        ll lo = 0, hi = x * y;
        if (lo > hi) swap(lo, hi);
        ll ans = -inf;
        rep (i, smr - sml + 1) {
            if (dp[i] < 0) continue;
            if (L < (i + sml) + lo || (i + sml) + hi < L) continue;
            if ((L - (i + sml)) % x) continue;
            chmax(ans, dp[i] + A[M] + abs((L - (i + sml)) / x));
        }
        if (ans >= 0) {
            cout << ans << endl;
        }
        else {
            puts("impossible");
        }
        return 0;
    }
    auto calc_dp2 = [](vector<pair<int, ll>> B) -> vector<vector<ll>> {
        ll sml = 0, smr = 0;
        for (auto [x, y] : B) {
            if (x < 0) sml += x * y;
            else smr += x * y;
        }
        vector<ll> dp(smr - sml + 1, -inf);
        dp[0 - sml] = 0;
        vector<vector<ll>> ans{dp};
        for (auto [x, y] : B) {
            int ax = abs(x);
            vector<ll> memo;
            vector<ll> res;
            deque<int> st;
            rep (i, ax) {
                // mod x ごとにスライド最大値の形になる
                memo.clear();
                for (int j = i; j <= smr - sml; j += ax) {
                    memo.push_back(dp[j]);
                }
                res.assign(memo.size(), -inf);
                st.clear();
                if (x > 0) {
                    rep (i, memo.size()) memo[i] -= i;
                    rep (i, res.size()) {
                        while (!st.empty() && st.front() < i - y) st.pop_front();
                        while (!st.empty() && memo[st.back()] < memo[i]) st.pop_back();
                        st.push_back(i);
                        res[i] = memo[st.front()] + i;
                    }
                }
                else {
                    rep (i, memo.size()) memo[i] += i;
                    rrep (i, res.size()) {
                        while (!st.empty() && st.front() > i + y) st.pop_front();
                        while (!st.empty() && memo[st.back()] < memo[i]) st.pop_back();
                        st.push_back(i);
                        res[i] = memo[st.front()] - i;
                    }
                }
                rep (j, res.size()) dp[j * ax + i] = res[j];
            }
            ans.push_back(dp);
        }
        reverse(all(ans));
        return ans;
    };
    ll ans = -inf;
    vector<ll> g(C.size() + 1);
    rrep (i, C.size()) g[i] = gcd(g[i + 1], C[i].first);
    vector<pair<int, ll>> D;
    rrep (i, C.size()) D.emplace_back(C[i].first, min<ll>(C[i].second, M));
    auto dp2 = calc_dp2(D);
    rep (i, smr - sml + 1) {
        if (dp[i] < 0) continue;
        ll L2 = L - (i + sml);
        if (L2 % g[0]) continue;
        ll sm = dp[i] + A[M];
        int m = -1;
        rep (j, C.size() - 1) {
            ll tmp = C[j].second;
            while ((L2 - tmp * C[j].first) % g[j + 1]) --tmp;
            assert(tmp >= 0);
            if ((L2 - tmp * C[j].first) / g[j + 1] < M * M) {
                m = j;
                break;
            }
            sm += tmp;
            L2 -= tmp * C[j].first;
        }
        if (m == -1) {
            assert(L2 % C.back().first == 0);
            ll tmp = L2 / C.back().first;
            if (tmp > C.back().second) continue;
            sm += tmp;
            chmax(ans, sm);
        }
        else {
            ll sml2 = 0, smr2 = 0;
            rep2 (j, m + 1, C.size()) {
                ll x = C[m].first;
                ll y = min<ll>(C[m].second, M);
                if (x < 0) sml2 += x * y;
                else smr2 += x * y;
            }
            for (ll j = max<ll>(L2 - sml2 - C[m].first * C[m].second, 0); j <= smr2 - sml2; j += g[m + 1]) {
                if (dp2[m + 1][j] < 0) continue;
                ll L3 = L2 - (j + sml2);
                if (L3 < 0) break;
                ll sm2 = sm + dp2[m + 1][j];
                if (L3 % C[m].first) continue;
                ll tmp = L3 / C[m].first;
                sm2 += tmp;
                chmax(ans, sm2);
                break;
            }
        }
    }
    if (ans >= 0) {
        cout << ans << endl;
    }
    else {
        puts("impossible");
    }
}

/*
フロベニウスの硬貨問題 : 互いに素な a,b で作れない最大の値は ab-a-b
x 以下を全て使う払い方があれば、それを必ず採用するとして良い (x 以下を使わない代わりに x 以上を使うのは明らかに少なくなる)
の 2 つから、 L-M^2 を超えない範囲で小さい方から選べるだけ選ぶ戦略が取れる
互いに素じゃない場合が面倒くさい
*/
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 46 ms 2480 KB Output is correct
7 Correct 8 ms 860 KB Output is correct
8 Correct 62 ms 1964 KB Output is correct
9 Correct 88 ms 3352 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 46 ms 2480 KB Output is correct
7 Correct 8 ms 860 KB Output is correct
8 Correct 62 ms 1964 KB Output is correct
9 Correct 88 ms 3352 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 46 ms 2388 KB Output is correct
18 Correct 9 ms 856 KB Output is correct
19 Correct 44 ms 1936 KB Output is correct
20 Correct 98 ms 3348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 722 ms 12452 KB Output is correct
25 Correct 119 ms 2376 KB Output is correct
26 Correct 1457 ms 24184 KB Output is correct
27 Correct 1472 ms 24012 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 1116 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 3 ms 856 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 420 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 1116 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 3 ms 856 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 420 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 2 ms 1116 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 860 KB Output is correct
18 Correct 4 ms 860 KB Output is correct
19 Correct 2 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 604 KB Output is correct
24 Incorrect 6 ms 3676 KB Output isn't correct
25 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 1116 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 3 ms 856 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 420 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 0 ms 556 KB Output is correct
14 Correct 2 ms 860 KB Output is correct
15 Correct 3 ms 860 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 10 ms 3052 KB Output is correct
24 Correct 4 ms 2004 KB Output is correct
25 Correct 10 ms 3876 KB Output is correct
26 Correct 15 ms 5912 KB Output is correct
27 Correct 10 ms 3344 KB Output is correct
28 Correct 6 ms 3964 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 46 ms 2480 KB Output is correct
7 Correct 8 ms 860 KB Output is correct
8 Correct 62 ms 1964 KB Output is correct
9 Correct 88 ms 3352 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 2 ms 1116 KB Output is correct
14 Correct 1 ms 344 KB Output is correct
15 Correct 3 ms 856 KB Output is correct
16 Correct 3 ms 860 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 420 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 2 ms 1116 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 1 ms 860 KB Output is correct
29 Correct 4 ms 860 KB Output is correct
30 Correct 2 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 1 ms 604 KB Output is correct
35 Incorrect 6 ms 3676 KB Output isn't correct
36 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 1116 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 3 ms 856 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 420 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 0 ms 556 KB Output is correct
14 Correct 2 ms 860 KB Output is correct
15 Correct 3 ms 860 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 10 ms 3052 KB Output is correct
24 Correct 4 ms 2004 KB Output is correct
25 Correct 10 ms 3876 KB Output is correct
26 Correct 15 ms 5912 KB Output is correct
27 Correct 10 ms 3344 KB Output is correct
28 Correct 6 ms 3964 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 2 ms 1116 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 1 ms 860 KB Output is correct
33 Correct 3 ms 860 KB Output is correct
34 Correct 1 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 10 ms 3060 KB Output is correct
42 Correct 4 ms 2004 KB Output is correct
43 Correct 11 ms 3868 KB Output is correct
44 Correct 15 ms 5860 KB Output is correct
45 Correct 11 ms 3344 KB Output is correct
46 Correct 6 ms 3964 KB Output is correct
47 Correct 0 ms 604 KB Output is correct
48 Correct 1 ms 348 KB Output is correct
49 Correct 160 ms 46344 KB Output is correct
50 Correct 37 ms 10464 KB Output is correct
51 Correct 189 ms 70540 KB Output is correct
52 Correct 293 ms 59304 KB Output is correct
53 Correct 141 ms 54044 KB Output is correct
54 Correct 97 ms 25800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 46 ms 2480 KB Output is correct
7 Correct 8 ms 860 KB Output is correct
8 Correct 62 ms 1964 KB Output is correct
9 Correct 88 ms 3352 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 46 ms 2388 KB Output is correct
18 Correct 9 ms 856 KB Output is correct
19 Correct 44 ms 1936 KB Output is correct
20 Correct 98 ms 3348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 722 ms 12452 KB Output is correct
25 Correct 119 ms 2376 KB Output is correct
26 Correct 1457 ms 24184 KB Output is correct
27 Correct 1472 ms 24012 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 2 ms 1116 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
33 Correct 3 ms 856 KB Output is correct
34 Correct 3 ms 860 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 420 KB Output is correct
38 Correct 1 ms 348 KB Output is correct
39 Correct 1 ms 604 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 2 ms 1116 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 1 ms 860 KB Output is correct
47 Correct 4 ms 860 KB Output is correct
48 Correct 2 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 0 ms 348 KB Output is correct
52 Correct 1 ms 604 KB Output is correct
53 Incorrect 6 ms 3676 KB Output isn't correct
54 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 1116 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 3 ms 856 KB Output is correct
5 Correct 3 ms 860 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 420 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 1116 KB Output is correct
13 Correct 0 ms 556 KB Output is correct
14 Correct 2 ms 860 KB Output is correct
15 Correct 3 ms 860 KB Output is correct
16 Correct 1 ms 344 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 604 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 10 ms 3052 KB Output is correct
24 Correct 4 ms 2004 KB Output is correct
25 Correct 10 ms 3876 KB Output is correct
26 Correct 15 ms 5912 KB Output is correct
27 Correct 10 ms 3344 KB Output is correct
28 Correct 6 ms 3964 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 2 ms 1116 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 1 ms 860 KB Output is correct
33 Correct 3 ms 860 KB Output is correct
34 Correct 1 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 1 ms 604 KB Output is correct
39 Correct 1 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 10 ms 3060 KB Output is correct
42 Correct 4 ms 2004 KB Output is correct
43 Correct 11 ms 3868 KB Output is correct
44 Correct 15 ms 5860 KB Output is correct
45 Correct 11 ms 3344 KB Output is correct
46 Correct 6 ms 3964 KB Output is correct
47 Correct 0 ms 604 KB Output is correct
48 Correct 1 ms 348 KB Output is correct
49 Correct 160 ms 46344 KB Output is correct
50 Correct 37 ms 10464 KB Output is correct
51 Correct 189 ms 70540 KB Output is correct
52 Correct 293 ms 59304 KB Output is correct
53 Correct 141 ms 54044 KB Output is correct
54 Correct 97 ms 25800 KB Output is correct
55 Correct 0 ms 348 KB Output is correct
56 Correct 1 ms 1116 KB Output is correct
57 Correct 0 ms 348 KB Output is correct
58 Correct 2 ms 860 KB Output is correct
59 Correct 3 ms 860 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 0 ms 348 KB Output is correct
63 Correct 1 ms 348 KB Output is correct
64 Correct 1 ms 604 KB Output is correct
65 Correct 0 ms 348 KB Output is correct
66 Correct 0 ms 348 KB Output is correct
67 Correct 10 ms 2936 KB Output is correct
68 Correct 3 ms 2004 KB Output is correct
69 Correct 10 ms 3872 KB Output is correct
70 Correct 17 ms 5844 KB Output is correct
71 Correct 10 ms 3340 KB Output is correct
72 Correct 7 ms 3880 KB Output is correct
73 Correct 0 ms 604 KB Output is correct
74 Correct 1 ms 348 KB Output is correct
75 Correct 160 ms 46484 KB Output is correct
76 Correct 37 ms 10552 KB Output is correct
77 Correct 200 ms 70532 KB Output is correct
78 Correct 276 ms 59320 KB Output is correct
79 Correct 120 ms 54040 KB Output is correct
80 Correct 99 ms 25560 KB Output is correct
81 Execution timed out 5045 ms 105140 KB Time limit exceeded
82 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 46 ms 2480 KB Output is correct
7 Correct 8 ms 860 KB Output is correct
8 Correct 62 ms 1964 KB Output is correct
9 Correct 88 ms 3352 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 46 ms 2388 KB Output is correct
18 Correct 9 ms 856 KB Output is correct
19 Correct 44 ms 1936 KB Output is correct
20 Correct 98 ms 3348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 348 KB Output is correct
24 Correct 722 ms 12452 KB Output is correct
25 Correct 119 ms 2376 KB Output is correct
26 Correct 1457 ms 24184 KB Output is correct
27 Correct 1472 ms 24012 KB Output is correct
28 Correct 1 ms 604 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 2 ms 1116 KB Output is correct
32 Correct 1 ms 344 KB Output is correct
33 Correct 3 ms 856 KB Output is correct
34 Correct 3 ms 860 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 420 KB Output is correct
38 Correct 1 ms 348 KB Output is correct
39 Correct 1 ms 604 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 0 ms 348 KB Output is correct
42 Correct 0 ms 348 KB Output is correct
43 Correct 0 ms 348 KB Output is correct
44 Correct 2 ms 1116 KB Output is correct
45 Correct 0 ms 348 KB Output is correct
46 Correct 1 ms 860 KB Output is correct
47 Correct 4 ms 860 KB Output is correct
48 Correct 2 ms 348 KB Output is correct
49 Correct 0 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 0 ms 348 KB Output is correct
52 Correct 1 ms 604 KB Output is correct
53 Incorrect 6 ms 3676 KB Output isn't correct
54 Halted 0 ms 0 KB -