Submission #1047048

# Submission time Handle Problem Language Result Execution time Memory
1047048 2024-08-07T08:08:26 Z 박영우(#11080) Sweeping (JOI20_sweeping) C++17
22 / 100
4223 ms 484484 KB
//#define LOCAL
#include <bits/stdc++.h>
#include <cassert>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx,avx2,fma")
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
#define MAX 2010101
#define MAXQ 101010
#define INF 1'000'000'100
#define bb ' '
#define ln '\n'
#define Ln '\n'
#define MOD 1000000007
#define TC 1
#ifdef LOCAL
#define DEBUG(a) cout<<a
#define TEST true
#else
#define DEBUG(...) 1234
#define TEST false
#endif

int N, M, Q;

//points
int X[MAX];
int Y[MAX];
int S[MAX];
vector<int> es[MAX];
//queries
int T[MAX];
int L[MAX];
pii ans[MAX];
vector<int> qv[MAX];

struct node {
	int val;
	int key;
	int p, n;
	int lnk;
	node(int k = 0, int v = 0, int p = 0, int n = 0) :p(p), n(n) {
		val = v;
		key = k;
		lnk = 0;
	}
};

vector<node> MEM;

void disc(int n) {
	if (MEM[n].p) MEM[MEM[n].p].n = MEM[n].n;
	if (MEM[n].n) MEM[MEM[n].n].p = MEM[n].p;
	MEM[n].p = MEM[n].n = 0;
}

int make_node(int k, int v, int p = 0, int n = 0) {
	int s = MEM.size();
	MEM.push_back(node(k, v, p, n));
	return s;
}

struct Dat {
	int sv[2] = { 0, 0 }; //linked list
	int ev[2] = { 0, 0 };
	int cap[2] = { 0, 0 }; //cap from down
	int N;
	void init(vector<int> K, vector<vector<int>> X) {
		vector<pii> ord;
		N = K.size();
		int i;
		for (i = 0; i < N; i++) ord.emplace_back(i, 0);

		sort(ord.begin(), ord.end(), [&](pii i, pii j) {return X[0][i.first] < X[0][j.first]; });
		int pv = 0;
		for (auto& v : ord) {
			int nn = make_node(K[v.first], X[0][v.first], pv);
			if (!sv[0]) sv[0] = nn;
			ev[0] = nn;
			v.second = nn;
			if (pv) MEM[pv].n = nn;
			pv = nn;
		}

		sort(ord.begin(), ord.end(), [&](pii i, pii j) {return X[1][i.first] < X[1][j.first]; });
		pv = 0;
		for (auto& v : ord) {
			int nn = make_node(K[v.first], X[1][v.first], pv);
			if (!sv[1]) sv[1] = nn;
			ev[1] = nn;
			if (pv) MEM[pv].n = nn;
			MEM[nn].lnk = v.second;
			MEM[v.second].lnk = nn;
			pv = nn;
		}
	}

	int& begin(int c) { return sv[c]; }
	int& rbegin(int c) { return ev[c]; }
	node& front(int c) { return MEM[sv[c]]; }
	node& back(int c) { return MEM[ev[c]]; }
};

vector<Dat> lists;
int flag; // flag for divide function

int divide(Dat& D, int c, int L) {
	int op = c ^ 1;
	int n = D.N;
	if (max(D.cap[c], D.front(c).val) >= L) {
		flag = 0;
		return -1;
	}
	if (max(D.cap[c], D.back(c).val) < L) {
		flag = 1;
		return -1;
	}
	int i;
	int chk = 0;
	int rem = 0; // remove
	int s, e;
	s = D.begin(c);
	e = D.rbegin(c);
	for (i = 0; i < n; i++) {
		if (MEM[s].val >= L) { //cap is smaller than L
			chk = 0;
			rem = i;
			break;
		}
		if (MEM[e].val < L) {
			chk = 1;
			rem = i;
			break;
		}
		s = MEM[s].n;
		e = MEM[e].p;
	}
	Dat nd;
	nd.cap[0] = D.cap[0];
	nd.cap[1] = D.cap[1];
	s = D.begin(c);
	e = D.rbegin(c);
	nd.N = rem;
	if (chk) { //remove from back
		e = D.rbegin(c);
		vector<int> rems;
		for (i = 0; i < rem; i++) {
			int opn = MEM[e].lnk;
			assert(opn);
			assert(e);
			if (opn == D.begin(op)) D.begin(op) = MEM[opn].n;
			if (opn == D.rbegin(op)) D.rbegin(op) = MEM[opn].p;
			disc(opn);
			rems.push_back(opn);
			e = MEM[e].p;
		}
		int ns = MEM[e].n; // [list 1(original)] ... e / ns ... [list 2(new)]
		MEM[e].n = 0;
		MEM[ns].p = 0;

		// D.sv[op], D.ev[op] is correct

		sort(rems.begin(), rems.end());
		for (i = 1; i < rem; i++) {
			MEM[rems[i - 1]].n = rems[i];
			MEM[rems[i]].p = rems[i - 1];
		}

		nd.sv[c] = ns;
		nd.sv[op] = rems[0];
		nd.ev[c] = D.ev[c];
		nd.ev[op] = rems.back();

		D.ev[c] = e;
		flag = 0;
	}
	else { // remove from front
		s = D.begin(c);
		vector<int> rems;
		for (i = 0; i < rem; i++) {
			int opn = MEM[s].lnk;
			assert(opn);
			assert(e);
			if (opn == D.begin(op)) D.begin(op) = MEM[opn].n;
			if (opn == D.rbegin(op)) D.rbegin(op) = MEM[opn].p;
			disc(opn);
			rems.push_back(opn);
			s = MEM[s].n;
		}
		int ne = MEM[s].p; // [list 1(new)] ... ne / s ... [list 2(original)]
		MEM[s].p = 0;
		MEM[ne].n = 0;

		// D.sv[op], D.ev[op] is correct

		sort(rems.begin(), rems.end());
		for (i = 1; i < rem; i++) {
			MEM[rems[i - 1]].n = rems[i];
			MEM[rems[i]].p = rems[i - 1];
		}

		nd.sv[c] = D.sv[c];
		nd.sv[op] = rems[0];
		nd.ev[c] = ne;
		nd.ev[op] = rems.back();

		D.sv[c] = s;
		flag = 1;
	}
	D.N = n - rem;
	lists.push_back(nd);
	return lists.size() - 1;
}

void solve(int l, int r, vector<int>& v) {
	lists.clear();
	MEM.clear();
	MEM.push_back(node());
	int i;
	int n = v.size();
	vector<int> K(n);
	vector<vector<int>> val(2, vector<int>(K.size()));
	for (i = 0; i < n; i++) {
		K[i] = v[i];
		val[0][i] = X[v[i]];
		val[1][i] = Y[v[i]];
	}
	Dat d;
	d.init(K, val);
	lists.push_back(d);
	set<pii> st; // (left top point of the triangle, index in lists)
	st.emplace(-1, 0);
	for (i = l; i <= r; i++) {
		if (T[i] == 1 || T[i] == 4) continue;
		if (T[i] == 2) {
			int v = N - L[i];
			auto it = st.lower_bound(pii(v, 0));
			it--;
			int pv = it->first;
			int ind1 = it->second;
			st.erase(it);
			int ind2 = divide(lists[ind1], 1, L[i] + 1);

			if (!~ind2) {
				if (flag) lists[ind1].cap[0] = max(lists[ind1].cap[0], v);
				st.emplace(pv, ind1);
				continue;
			}

			if (flag) { //reversed
				st.emplace(pv, ind1);
				st.emplace(v, ind2);
				lists[ind2].cap[0] = max(lists[ind2].cap[0], v);
			}
			else {
				st.emplace(pv, ind2);
				st.emplace(v, ind1);
				lists[ind1].cap[0] = max(lists[ind1].cap[0], v);
			}
		}
		else {
			int v = N - L[i];
			auto it = st.lower_bound(pii(L[i] + 1, 0));
			it--;
			int pv = it->first;
			int ind1 = it->second;
			st.erase(it);
			int ind2 = divide(lists[ind1], 0, L[i] + 1);

			if (!~ind2) {
				if (flag) lists[ind1].cap[1] = max(lists[ind1].cap[1], v);
				st.emplace(pv, ind1);
				continue;
			}

			if (flag) { //reversed
				st.emplace(pv, ind2);
				st.emplace(L[i], ind1);
				lists[ind2].cap[1] = max(lists[ind2].cap[1], v);
			}
			else {
				st.emplace(pv, ind1);
				st.emplace(L[i], ind2);
				lists[ind1].cap[1] = max(lists[ind1].cap[1], v);
			}
		}
	}
	for (auto& d : lists) {
		assert(!MEM[d.sv[0]].p);
		assert(!MEM[d.sv[1]].p);
		assert(!MEM[d.ev[0]].n);
		assert(!MEM[d.ev[1]].n);
		int s = d.sv[0];
		for (i = 0; i < d.N; i++) {
			int v = MEM[s].key;
			X[v] = max(X[v], d.cap[0]);
			Y[v] = max(Y[v], d.cap[1]);
			if (qv[v].size() && qv[v].back() == r) {
				ans[qv[v].back()] = pii(X[v], Y[v]);
				qv[v].pop_back();
			}
			s = MEM[s].n;
		}
	}
}

vector<int> tree[MAX * 4];
vector<tuple<int, int, int>> vt;

void init(int s, int e, int loc = 1) {
	vt.emplace_back(s, e, loc);
	if (s == e) return;
	int m = s + e >> 1;
	init(s, m, loc * 2);
	init(m + 1, e, loc * 2 + 1);
}

void add(int s, int e, int l, int r, int v, int loc = 1) {
	if (e < l || r < s) return;
	if (l <= s && e <= r) {
		tree[loc].push_back(v);
		return;
	}
	int m = s + e >> 1;
	add(s, m, l, r, v, loc * 2);
	add(m + 1, e, l, r, v, loc * 2 + 1);
}

signed main() {
	ios::sync_with_stdio(false), cin.tie(0);
	cin >> N >> M >> Q;
	int i, x;
	for (i = 1; i <= M; i++) {
		cin >> X[i] >> Y[i];
		S[i] = 1;
	}
	init(1, Q);
	for (i = 1; i <= Q; i++) {
		cin >> T[i];
		if (T[i] == 1) {
			cin >> x;
			if (qv[x].empty()) add(1, Q, S[x], i, x);
			else add(1, Q, qv[x].back() + 1, i, x);
			qv[x].push_back(i);
		}
		if (T[i] == 2 || T[i] == 3) cin >> L[i];
		if (T[i] == 4) {
			S[++M] = i;
			cin >> X[M] >> Y[M];
		}
	}
	for (i = 1; i <= M; i++) reverse(qv[i].begin(), qv[i].end());
	sort(vt.begin(), vt.end());
	for (auto& [l, r, v] : vt) if (tree[v].size()) solve(l, r, tree[v]);
	for (i = 1; i <= Q; i++) if (T[i] == 1) cout << ans[i].first << bb << ans[i].second << ln;
}

Compilation message

sweeping.cpp: In function 'void init(int, int, int)':
sweeping.cpp:317:12: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
  317 |  int m = s + e >> 1;
      |          ~~^~~
sweeping.cpp: In function 'void add(int, int, int, int, int, int)':
sweeping.cpp:328:12: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
  328 |  int m = s + e >> 1;
      |          ~~^~~
# Verdict Execution time Memory Grader output
1 Correct 49 ms 294416 KB Output is correct
2 Correct 48 ms 294416 KB Output is correct
3 Correct 45 ms 292372 KB Output is correct
4 Correct 49 ms 294416 KB Output is correct
5 Correct 44 ms 294164 KB Output is correct
6 Correct 44 ms 294576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3230 ms 439216 KB Output is correct
2 Correct 3169 ms 439984 KB Output is correct
3 Correct 3108 ms 440556 KB Output is correct
4 Correct 2080 ms 436752 KB Output is correct
5 Correct 2000 ms 437152 KB Output is correct
6 Correct 2322 ms 439724 KB Output is correct
7 Correct 3083 ms 443348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2722 ms 432112 KB Output is correct
2 Correct 2453 ms 432072 KB Output is correct
3 Correct 1907 ms 431408 KB Output is correct
4 Correct 1865 ms 431748 KB Output is correct
5 Correct 2363 ms 431752 KB Output is correct
6 Correct 2396 ms 432088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2722 ms 432112 KB Output is correct
2 Correct 2453 ms 432072 KB Output is correct
3 Correct 1907 ms 431408 KB Output is correct
4 Correct 1865 ms 431748 KB Output is correct
5 Correct 2363 ms 431752 KB Output is correct
6 Correct 2396 ms 432088 KB Output is correct
7 Correct 3169 ms 435680 KB Output is correct
8 Correct 3054 ms 435168 KB Output is correct
9 Correct 3108 ms 433824 KB Output is correct
10 Correct 1989 ms 431968 KB Output is correct
11 Correct 1966 ms 430808 KB Output is correct
12 Correct 2950 ms 426100 KB Output is correct
13 Correct 2638 ms 431352 KB Output is correct
14 Correct 140 ms 327844 KB Output is correct
15 Correct 4223 ms 484484 KB Output is correct
16 Correct 3193 ms 434520 KB Output is correct
17 Incorrect 2028 ms 439088 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 49 ms 294416 KB Output is correct
2 Correct 48 ms 294416 KB Output is correct
3 Correct 45 ms 292372 KB Output is correct
4 Correct 49 ms 294416 KB Output is correct
5 Correct 44 ms 294164 KB Output is correct
6 Correct 44 ms 294576 KB Output is correct
7 Correct 3230 ms 439216 KB Output is correct
8 Correct 3169 ms 439984 KB Output is correct
9 Correct 3108 ms 440556 KB Output is correct
10 Correct 2080 ms 436752 KB Output is correct
11 Correct 2000 ms 437152 KB Output is correct
12 Correct 2322 ms 439724 KB Output is correct
13 Correct 3083 ms 443348 KB Output is correct
14 Correct 2722 ms 432112 KB Output is correct
15 Correct 2453 ms 432072 KB Output is correct
16 Correct 1907 ms 431408 KB Output is correct
17 Correct 1865 ms 431748 KB Output is correct
18 Correct 2363 ms 431752 KB Output is correct
19 Correct 2396 ms 432088 KB Output is correct
20 Correct 3169 ms 435680 KB Output is correct
21 Correct 3054 ms 435168 KB Output is correct
22 Correct 3108 ms 433824 KB Output is correct
23 Correct 1989 ms 431968 KB Output is correct
24 Correct 1966 ms 430808 KB Output is correct
25 Correct 2950 ms 426100 KB Output is correct
26 Correct 2638 ms 431352 KB Output is correct
27 Correct 140 ms 327844 KB Output is correct
28 Correct 4223 ms 484484 KB Output is correct
29 Correct 3193 ms 434520 KB Output is correct
30 Incorrect 2028 ms 439088 KB Output isn't correct
31 Halted 0 ms 0 KB -