Submission #1042152

# Submission time Handle Problem Language Result Execution time Memory
1042152 2024-08-02T15:25:42 Z izanbf Tropical Garden (IOI11_garden) C++14
100 / 100
1289 ms 34128 KB
#include "garden.h"
#include "gardenlib.h"
#include <bits/stdc++.h>
using namespace std;


void count_routes(int N, int M, int P, int R[][2], int Q, int G[]) {
  vector<vector<int>> adj(N);
  for (int i = 0; i < M; ++i) {
    adj[R[i][0]].push_back(R[i][1]);
    adj[R[i][1]].push_back(R[i][0]);
  }

  auto node = [&](int u, int v) {
    if (adj[v][0] == u)
      return N+v;
    else
      return v;
  };

  const int J = 29;
  vector<int> succ(2*N, -1), indeg(2*N, 0);
  vector<vector<int>> rev(2*N);

  auto set_succ = [&](int u, int v) {
    succ[u] = v;
    rev[v].push_back(u);
    ++indeg[v];
  };

  for (int i = 0; i < N; ++i) {
    set_succ(node(-1, i), node(i, adj[i][0]));
    for (int v : adj[i]) {
      if (v != adj[i][0] or adj[i].size() == 1)
        set_succ(node(v, i), node(i, adj[i][0]));
      else
        set_succ(node(v, i), node(i, adj[i][1]));
    }
  }

  vector<int> lambda(2*N, -1), mu(2*N, -1);

  auto floyd_cycle = [&](int u) {
    // buscamos dos elementos en un ciclo
    int a = succ[u];
    int b = succ[succ[u]];
    int i = 1;
    while (a != b) {
      if (mu[a] == 0) break;
      ++i;
      a = succ[a];
      b = succ[succ[b]];
    }

    if (mu[a] == 0) { // este ciclo ya lo hemos completado antes, no queremos repetir
      lambda[u] = lambda[a];
      mu[u] = i;
    }
    else {
      // ahora iteramos el ciclo para calcular su longitud
      b = succ[a];
      lambda[u] = 1; // longitud ciclo
      while (a != b) {
        ++lambda[u];
        b = succ[b];
      }
      // lambda[u] calculada

      // pasamos por todos los elementos del ciclo para guardar la informacion
      for (int i = 0; i < lambda[u]; ++i) {
        mu[a] = 0;
        lambda[a] = lambda[u];
        a = succ[a];
      }

      // reiniciamos punteros y ahora calculamos longitud de la cola e inicio del ciclo
      a = u;
      b = u;
      for (int i = 0; i < lambda[u]; ++i) {
        b = succ[b];
      }
      mu[u] = 0; // longitud cola 
      while (a != b) {
        ++mu[u];
        a = succ[a];
        b = succ[b];
      }
      // mu[u] calculada
    }

    // pasamos por los elementos de la cola para guardar la informacion
    a = succ[u];
    for (int i = 1; i < mu[u]; ++i) {
      mu[a] = mu[u] - i;
      lambda[a] = lambda[u];
      a = succ[a];
    }
  };

  // empezamos a hacer floyd por las hojas, para procesar colas eficientemente
  for (int u = 0; u < 2*N; ++u) {
    if (indeg[u] == 0) floyd_cycle(u);
  }

  // los que queden son ciclos puros
  for (int u = 0; u < 2*N; ++u) {
    if (mu[u] == -1) floyd_cycle(u);
  }

  auto get_rev_dists = [&](int u) {
    vector<int> dist(2*N, -1);
    queue<int> q;
    dist[u] = 0;
    q.push(u);
    while (not q.empty()) {
      int i = q.front(); q.pop();
      for (int j : rev[i]) {
        if (dist[j] == -1) {
          q.push(j);
          dist[j] = dist[i] + 1;
        }
      }
    }
    return dist;
  };

  auto can_reach = [&](int u, int v, int k, const vector<int>& distv) -> bool {
    if (distv[u] == -1) return false; // otra componenete
    if (k < distv[u]) return false; // no llegamos
    if (distv[u] == k) return true; // directamente
    if (mu[v] == 0 and (k - distv[u]) % lambda[v] == 0) // dando vueltas al ciclo
      return true; 
    return false;
  };

  vector<int> distP = get_rev_dists(P), distNP = get_rev_dists(N+P);
  for(int it = 0; it < Q; ++it) {
    int cnt = 0;
    for (int i = 0; i < N; ++i) {
      int u = node(-1, i);

      if (can_reach(u, P, G[it], distP) or can_reach(u, N+P, G[it], distNP))
        ++cnt;
    }
    answer(cnt);
  }
}

Compilation message

garden.cpp: In function 'void count_routes(int, int, int, int (*)[2], int, int*)':
garden.cpp:21:13: warning: unused variable 'J' [-Wunused-variable]
   21 |   const int J = 29;
      |             ^
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 0 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 0 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 9 ms 7004 KB Output is correct
12 Correct 19 ms 9820 KB Output is correct
13 Correct 29 ms 20628 KB Output is correct
14 Correct 72 ms 28008 KB Output is correct
15 Correct 82 ms 28380 KB Output is correct
16 Correct 60 ms 20564 KB Output is correct
17 Correct 51 ms 18260 KB Output is correct
18 Correct 36 ms 9812 KB Output is correct
19 Correct 68 ms 28056 KB Output is correct
20 Correct 76 ms 28492 KB Output is correct
21 Correct 97 ms 20564 KB Output is correct
22 Correct 59 ms 18000 KB Output is correct
23 Correct 71 ms 30544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 604 KB Output is correct
2 Correct 0 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 604 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 9 ms 7004 KB Output is correct
12 Correct 19 ms 9820 KB Output is correct
13 Correct 29 ms 20628 KB Output is correct
14 Correct 72 ms 28008 KB Output is correct
15 Correct 82 ms 28380 KB Output is correct
16 Correct 60 ms 20564 KB Output is correct
17 Correct 51 ms 18260 KB Output is correct
18 Correct 36 ms 9812 KB Output is correct
19 Correct 68 ms 28056 KB Output is correct
20 Correct 76 ms 28492 KB Output is correct
21 Correct 97 ms 20564 KB Output is correct
22 Correct 59 ms 18000 KB Output is correct
23 Correct 71 ms 30544 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 99 ms 7004 KB Output is correct
26 Correct 168 ms 10020 KB Output is correct
27 Correct 595 ms 20568 KB Output is correct
28 Correct 815 ms 27992 KB Output is correct
29 Correct 900 ms 28496 KB Output is correct
30 Correct 493 ms 20560 KB Output is correct
31 Correct 532 ms 18324 KB Output is correct
32 Correct 204 ms 9812 KB Output is correct
33 Correct 819 ms 27916 KB Output is correct
34 Correct 854 ms 28560 KB Output is correct
35 Correct 647 ms 20560 KB Output is correct
36 Correct 799 ms 18000 KB Output is correct
37 Correct 759 ms 30544 KB Output is correct
38 Correct 1289 ms 34128 KB Output is correct