Submission #1040874

# Submission time Handle Problem Language Result Execution time Memory
1040874 2024-08-01T11:16:48 Z crimson231 Demarcation (BOI14_demarcation) C++17
100 / 100
27 ms 9588 KB
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <vector>
#include <cassert>
#include <cmath>
#include <cstring>

/*
* 
* Splay tree / sweeping by jay0202
* Geometry by crimson231
* 
*/

//#define JAY_MODULE_DEBUG
//#define CRIMSON_MODULE_DEBUG

typedef long long ll;
typedef double ld;
typedef std::vector<int> Vint;
const int LEN = 1e5 + 1;

int N;
ll memo[LEN];
std::vector<int> g[LEN]; // above lines
struct Pos {
    int x, y;
    Pos(int X = 0, int Y = 0) : x(X), y(Y) {}
    bool operator == (const Pos& p) const { return x == p.x && y == p.y; }
    bool operator != (const Pos& p) const { return x != p.x || y != p.y; }
    bool operator < (const Pos& p) const { return x == p.x ? y < p.y : x < p.x; }
    Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; }
    Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; }
    Pos operator * (const int& n) const { return { x * n, y * n }; }
    Pos operator / (const int& n) const { return { x / n, y / n }; }
    ll operator * (const Pos& p) const { return (ll)x * p.x + (ll)y * p.y; }
    ll operator / (const Pos& p) const { return (ll)x * p.y - (ll)y * p.x; }
    Pos& operator += (const Pos& p) { x += p.x; y += p.y; return *this; }
    Pos& operator *= (const int& scale) { x *= scale; y *= scale; return *this; }
    Pos operator - () const { return { -x, -y }; }
    Pos operator ~ () const { return { -y, x }; }
    friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; }
    friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; }
} pos[LEN];
const Pos O = Pos(0, 0);
typedef std::vector<Pos> Polygon;
ll cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); }
int ccw(const Pos& d1, const Pos& d2, const Pos& d3) { ll ret = cross(d1, d2, d3); return ret < 0 ? -1 : !!ret; }
ll area(Pos H[], const int& sz) {
    ll ret = 0;
    for (int i = 0; i < sz; i++) {
        Pos cur = H[i], nxt = H[(i + 1) % sz];
        ret += cross(O, cur, nxt);
    }
    return ret;
}
ll area(std::vector<Pos>& H) {
    ll ret = 0;
    int sz = H.size();
    for (int i = 0; i < sz; i++) {
        Pos cur = H[i], nxt = H[(i + 1) % sz];
        ret += cross(O, cur, nxt);
    }
    return ret;
}
void norm(Pos H[], const int& sz) {
    ll A = area(H, sz);
    assert(A);
    if (A < 0) std::reverse(H, H + sz);
    return;
}
void norm(Polygon& H) {
    ll A = area(H);
    if (A < 0) std::reverse(H.begin(), H.end());
    auto s = std::min_element(H.begin(), H.end());
    std::rotate(H.begin(), s, H.end());
}
void move(Polygon& H, const Pos& vec) {
    int sz = H.size();
    for (int i = 0; i < sz; i++) H[i] += vec;
}
void rotate() { for (int i = 0; i < N; i++) pos[i] = ~pos[i]; }
void rotate(Polygon& H) {
    int sz = H.size();
    for (int i = 0; i < sz; i++) H[i] = ~H[i];
}
void mirror(Polygon& H) {
    int sz = H.size();
    for (int i = 0; i < sz; i++) H[i].x = -H[i].x;
}
bool polygon_cmp(const Polygon& A, const Polygon& B) {
    int a = A.size(), b = B.size();
    if (a != b) return 0;
    for (int i = 0; i < a; i++) if (A[i] != B[i]) return 0;
    return 1;
}
bool operator == (const Polygon& p, const Polygon& q) { return polygon_cmp(p, q); }
Polygon make_polygon(int u, int v, Pos s, Pos e) {
    Polygon H, tmp;
    Vint V;
    //std::cout << "fuck:: make poly " << u << " " << v << "\n";
    //std::cout << "fuck:: " << s << " " << e << "\n";
    H.push_back(e);
    H.push_back(s);
    for (int i = (u + 1) % N; i != (v + 1) % N; i = (i + 1) % N) {
        const Pos& p = pos[i];
        if (p != s && p != e) H.push_back(p);
    }
    int sz = H.size();
    V.resize(sz, 0);
    for (int i = 0; i < sz; i++) {
        const Pos& pre = H[(i - 1 + sz) % sz], cur = H[i], nxt = H[(i + 1) % sz];
        if (!ccw(pre, cur, nxt)) V[i] = 1;
    }
    for (int i = 0; i < sz; i++) if (!V[i]) tmp.push_back(H[i]);
    return tmp;
}
bool all_polygon_cmp(int u, int v, Pos s, Pos e) {
    Polygon A = make_polygon(u, v, s, e);
    Polygon B = make_polygon(v, u, e, s);
#ifdef CRIMSON_MODULE_DEBUG
    std::cout << "FUCK:: s:: " << s << " e:: " << e << "\n";
    std::cout << "FUCK::\n";
    std::cout << "A = [\n";
    for (Pos& p : A) {
        std::cout << "(" << p.x << ", " << p.y << "), \n";
    }
    std::cout << "]\n";
    std::cout << "B = [\n";
    for (Pos& p : B) {
        std::cout << "(" << p.x << ", " << p.y << "), \n";
    }
    std::cout << "]\n";
#endif
    if (A.size() != B.size()) return 0;
    norm(B);
    Pos b = B[0];
    for (int i = 0; i < 2; i++) {
        for (int j = 0; j < 4; j++) {
            rotate(A);
            norm(A);
            Pos a = A[0];
            move(A, b - a);
            if (A == B) return 1;
        }
        mirror(A);
    }
    return 0;
}
struct Line {
    int y;      // y coord
    int l, r;   // x coords (l <= r)

    /// <summary>
    /// sort lines
    /// <para>
    /// 1. compare y.
    /// </para>
    /// <para>
    /// 2. if y coords are equal, compare x.
    /// </para>
    /// </summary>
    /// <param name="o">other</param>
    /// <returns>bool</returns>
    bool operator<(const Line& o) const {
        return y == o.y ? l < o.l : y > o.y;
    }
};
int Q;
/// <summary>
/// event horizon
/// </summary>
struct Event {
    int i; // index of event line
    int d; // flag value. (0: insert range, 1: query range)
    Line l; // line
    bool operator<(const Event& r) const { return l < r.l; }
} events[LEN];
/// <summary>
/// segment struct defined to use in SplayTree node.
/// simplified version of line event (ommited y coord)
/// </summary>
struct Seg {
    int l, r; // x coords
    int i;
    Seg(int l = 0, int r = 0, int i = 0) : l(l), r(r), i(i) {}
    /// <summary>
    /// only compare x coords
    /// </summary>
    /// <param name="o">other</param>
    /// <returns></returns>
    bool operator<(const Seg& o) const {
        return l < o.l;
    }
};
std::vector<Seg> segs;
void match(int u, int v, int l, int r) {
#ifdef JAY_MODULE_DEBUG
    std::cout << "facing pair: " << u << ' ' << v << '\n';
    std::cout << "    facing range: " << l << ' ' << r << '\n';
    g[u].push_back(v);
#endif
    segs.push_back(Seg(l, r, v));
}
bool find_split(const int i, const Seg& S, Pos& s, Pos& e) {
    int j = i, k = S.i;
    Pos& J = pos[j], & K = pos[k];
    bool f = 0;
    if (k < j) f = 1, std::swap(j, k);
    ll a1 = memo[k] - memo[j];
    //std::cout << "FUCK:: a1:: " << a1 << "\n";
    //std::cout << "FUCK:: A :: " << memo[N] << "\n";
    if (f) a1 = memo[N] - a1;
    Pos& pl = pos[i], & pr = pos[(i + 1) % N];
    assert(pl.x < pr.x);
    int r = std::min(pr.x, S.r);
    int l = std::max(pl.x, S.l);
    int yh = pos[S.i].y;
    int yl = pl.y;
    int h = yh - yl;
    Pos b1 = Pos(r, yh), b2 = Pos(l, yh), b3 = Pos(l, yl), b4 = Pos(r, yl);
    /*
         sl b2 b1 sr == K <--...
    J == pl b3 b4 pr ------->... a1
    */
    ll amax = a1 + K / b2 + b2 / b3 + b3 / J;
    ll amin = a1 + K / b1 + b1 / b4 + b4 / J;
    ll a2 = memo[N] >> 1;
    //std::cout << "DEBUG:: amin:: " << amin << " amax:: " << amax << " a2:: " << a2 << "\n";
    if (amin <= a2 && a2 <= amax) {
        ll box = a2 - amin;
        ll w = box / h;
        if (w & 1) return 0;
        s = Pos(r - (w >> 1), pr.y);
        e = Pos(r - (w >> 1), pos[S.i].y);
        assert(s < e);
        return 1;
    }
    return 0;
}
class SplayTree {
    struct Node {
        Node* l;
        Node* r;
        Node* p;
        Seg val;
        Node(int l, int r, int i) : l(0), r(0), p(0) { val = { l, r, i }; }
        ~Node() { if (l) delete l; if (r) delete r; }
    } *root;
    void rotate(Node* x) {
        Node* p = x->p;
        if (!p) return;
        Node* b = 0;
        if (x == p->l) {
            p->l = b = x->r;
            x->r = p;
        }
        else {
            p->r = b = x->l;
            x->l = p;
        }
        x->p = p->p;
        p->p = x;
        if (b) b->p = p;
        (x->p ? p == x->p->l ? x->p->l : x->p->r : root) = x;
    }
    void splay(Node* x) {
        while (x->p) {
            Node* p = x->p;
            Node* g = p->p;
            if (g) {
                if ((x == p->l) == (p == g->l)) rotate(p);
                else rotate(x);
            }
            rotate(x);
        }
    }

    /// <summary>
    /// find a line that has nearest r coord from l.  
    /// </summary>
    /// <param name="l">: target x coord</param>
    /// <returns></returns>
    Node* find(int l) {
        if (!root) return 0;

        Node* p = root;
        while (1) {
            if (p->val.r == l) break;
            if (p->val.r < l) {
                if (!p->r) {
                    break;
                }
                p = p->r;
            }
            else {
                if (!p->l) {
                    break;
                }
                p = p->l;
            }
        }
        splay(p);
        return p;
    }

public:
    SplayTree() : root(0) {}
    ~SplayTree() { if (root) delete root; }
    void insert(int l, int r, int i) {
        if (!root) {
            root = new Node(l, r, i);
            return;
        }
        Node* p = root;
        Node** pp;
        while (1) {
            if (p->val.l < l) {
                if (!p->r) {
                    pp = &p->r;
                    break;
                }
                p = p->r;
            }
            else {
                if (!p->l) {
                    pp = &p->l;
                    break;
                }
                p = p->l;
            }
        }
        Node* x = new Node(l, r, i);
        *pp = x;
        x->p = p;
        splay(x);
    }
    void pop(Node* ptr) {
        if (!ptr) return;
        splay(ptr);
        Node* p = root;
        if (p->l && p->r) {
            root = p->l; root->p = 0;
            Node* l = root;
            while (l->r) l = l->r;
            l->r = p->r;
            p->r->p = l;
        }
        else if (p->l) root = p->l, root->p = 0;
        else if (p->r) root = p->r, root->p = 0;
        else root = 0;
        p->l = p->r = 0;
        delete p;
    }

    /// <summary>
    /// find leftmost line first.
    /// if line is splitted by query segment, then insert new segment and return.
    /// else, find right segments while r coord of segment is smaller than query r.
    /// </summary>
    /// <param name="l">x coord</param>
    /// <param name="r">x coord</param>
    /// <param name="i">line index</param>
    void query(int l, int r, int i) {
        assert(root);

        Node* x = find(l); // first segment
        assert(x->val.l <= l);

        if (x->val.r < l) { // if segment is out of range: find very right one
            x = x->r;
            while (x->l) x = x->l;
        }

        if (x->val.r > r) { // if splitted
            match(i, x->val.i, l, r);
            int nl = r, nr = x->val.r, ni = x->val.i;
            x->val.r = l; // split
            if (x->val.l == l) pop(x); // and pop if left is covered.
            insert(nl, nr, ni); // insert new right segment
            return;
        }

        match(i, x->val.i, l, x->val.r); // match two of them
        x->val.r = l; // left side of segment is covered by query segment
        if (x->val.r == x->val.l) pop(x); // pop if all range covered

        while (x = find(l)) { // find leftmost
            //if (x->val.r == l) break;
            if (x->val.r <= l) { // if leftmost is out of range
                if (!x->r) return; // no more right segment
                x = x->r;
                while (x->l) x = x->l; // find very right segment
            }
            if (x->val.l > r) return;
            match(i, x->val.i, x->val.l, std::min(r, x->val.r)); // match two of them
            if (x->val.r > r) { // if right segment is not covered totally
                x->val.l = r;
                break; // then, query range is sweeped. return
            }
            else pop(x); // else, a segment is sweeped. pop and find next segment
        }
    }
} sp;
bool vertical_split(Pos& s, Pos& e) {
    memo[0] = 0;
    for (int i = 0; i < N; i++) {
        memo[i + 1] = memo[i] + pos[i] / pos[(i + 1) % N];
    }
    // horizontal check
    Q = 0;
    for (int i = 0; i < N; ++i) {
        int j = (i + 1) % N;
        if (pos[i].y == pos[j].y) {
            if (pos[i].x < pos[j].x) { // right halfline
                events[Q++] = { i, 1, { pos[i].y, pos[i].x, pos[j].x } };
            }
            if (pos[i].x > pos[j].x) { // left halfline
                events[Q++] = { i, 0, { pos[i].y, pos[j].x, pos[i].x } };
            }
        }
    }

    std::sort(events, events + Q);

    for (int i = 0; i < Q; ++i) {
        //std::cout << (events[i].d == 0 ? "insert" : "query") << " segment: (h, l, r) ";
        //std::cout << events[i].l.y << ' ' << events[i].l.l << ' ' << events[i].l.r << '\n';
        if (events[i].d == 0) sp.insert(events[i].l.l, events[i].l.r, events[i].i);
        if (events[i].d == 1) {
            segs.clear();
            sp.query(events[i].l.l, events[i].l.r, events[i].i);
            for (Seg& S : segs) {
                //std::cout << "segs::\n";
                if (find_split(events[i].i, S, s, e)) {
                    //std::cout << "polygon cmp before::\n";
                    if (all_polygon_cmp(events[i].i, S.i, s, e)) return 1;
                    //std::cout << "polygon cmp after::\n";
                }
            }
        }
    }

#ifdef JAY_MODULE_DEBUG
    for (int i = 0; i <= N; ++i) {
        if (g[i].size()) {
            std::cout << "right half-line from " << i << '\n';
            std::cout << "    matching left half-lines from: ";
            for (const int& j : g[i]) std::cout << j << ' ';
            std::cout << '\n';
        }
    }
#endif
    return 0;
}
void solve() {
    //freopen("demarcation.in copy.14", "r", stdin);
    //freopen("demarcation.out", "w", stdout);
    std::cin.tie(0)->sync_with_stdio(0);
    //std::cout.tie(0);
    std::cin >> N;
    for (int i = 0; i < N; ++i) std::cin >> pos[i].x >> pos[i].y;
    ll A = area(pos, N);
    assert(A);
    if (A < 0) std::reverse(pos, pos + N);
    A *= -1;
    A >>= 1;
#ifdef CRIMSON_MODULE_DEBUG
    std::cout << "FUCK::\n";
    std::cout << "pos = [\n";
    for (int i = 0; i < N; i++) {
        std::cout << "(" << pos[i].x << ", " << pos[i].y << "), \n";
    }
    std::cout << "]\n";
#endif
    if (A & 1) { std::cout << "NO\n"; return; }

    Pos s, e;
    if (vertical_split(s, e)) {
        //std::cout << "YES\n";
        for (int i = 0; i < N; i++) {
            if (pos[i].x == e.x && s.y < pos[i].y && e.y > pos[i].y)
                e = pos[i];
        }
        std::cout << s << " " << e << "\n";
        return;
    }
    rotate();
    //std::cout << "FUCK::\n";
    if (vertical_split(s, e)) {
        //std::cout << "YES\n";
        for (int i = 0; i < N; i++) {
            if (pos[i].x == e.x && s.y < pos[i].y && e.y > pos[i].y)
                e = pos[i];
        }
        std::cout << -~s << " " << -~e << "\n";
        return;
    }
    //std::cout << "FUCK::\n";
    std::cout << "NO\n";
    return;
}
int main() { solve(); return 0; }//boj10098 Demarcation

Compilation message

demarcation.cpp: In member function 'void SplayTree::query(int, int, int)':
demarcation.cpp:389:18: warning: suggest parentheses around assignment used as truth value [-Wparentheses]
  389 |         while (x = find(l)) { // find leftmost
      |                ~~^~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5720 KB Output is correct
2 Correct 1 ms 5208 KB Output is correct
3 Correct 1 ms 5212 KB Output is correct
4 Correct 4 ms 5724 KB Output is correct
5 Correct 1 ms 5212 KB Output is correct
6 Correct 1 ms 5212 KB Output is correct
7 Correct 1 ms 5212 KB Output is correct
8 Correct 1 ms 5212 KB Output is correct
9 Correct 21 ms 8516 KB Output is correct
10 Correct 1 ms 5212 KB Output is correct
11 Correct 1 ms 5212 KB Output is correct
12 Correct 1 ms 5212 KB Output is correct
13 Correct 1 ms 5212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5212 KB Output is correct
2 Correct 1 ms 5212 KB Output is correct
3 Correct 1 ms 5300 KB Output is correct
4 Correct 1 ms 5212 KB Output is correct
5 Correct 1 ms 5212 KB Output is correct
6 Correct 1 ms 5212 KB Output is correct
7 Correct 1 ms 5212 KB Output is correct
8 Correct 1 ms 5212 KB Output is correct
9 Correct 1 ms 5212 KB Output is correct
10 Correct 1 ms 5212 KB Output is correct
11 Correct 1 ms 5212 KB Output is correct
12 Correct 1 ms 5212 KB Output is correct
13 Correct 1 ms 5212 KB Output is correct
14 Correct 1 ms 5212 KB Output is correct
15 Correct 1 ms 5212 KB Output is correct
16 Correct 1 ms 5212 KB Output is correct
17 Correct 1 ms 5260 KB Output is correct
18 Correct 1 ms 5212 KB Output is correct
19 Correct 1 ms 5212 KB Output is correct
20 Correct 1 ms 5212 KB Output is correct
21 Correct 1 ms 5212 KB Output is correct
22 Correct 1 ms 5212 KB Output is correct
23 Correct 1 ms 5296 KB Output is correct
24 Correct 1 ms 5208 KB Output is correct
25 Correct 1 ms 5212 KB Output is correct
26 Correct 1 ms 5212 KB Output is correct
27 Correct 1 ms 5212 KB Output is correct
28 Correct 1 ms 5208 KB Output is correct
29 Correct 1 ms 5212 KB Output is correct
30 Correct 1 ms 5212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5212 KB Output is correct
2 Correct 1 ms 5212 KB Output is correct
3 Correct 1 ms 5208 KB Output is correct
4 Correct 1 ms 5212 KB Output is correct
5 Correct 1 ms 5208 KB Output is correct
6 Correct 1 ms 5208 KB Output is correct
7 Correct 1 ms 5212 KB Output is correct
8 Correct 1 ms 5208 KB Output is correct
9 Correct 1 ms 5212 KB Output is correct
10 Correct 1 ms 5212 KB Output is correct
11 Correct 1 ms 5212 KB Output is correct
12 Correct 1 ms 5212 KB Output is correct
13 Correct 1 ms 5212 KB Output is correct
14 Correct 1 ms 5212 KB Output is correct
15 Correct 1 ms 5212 KB Output is correct
16 Correct 1 ms 5212 KB Output is correct
17 Correct 1 ms 5212 KB Output is correct
18 Correct 1 ms 5212 KB Output is correct
19 Correct 1 ms 5212 KB Output is correct
20 Correct 1 ms 5212 KB Output is correct
21 Correct 1 ms 5212 KB Output is correct
22 Correct 1 ms 5212 KB Output is correct
23 Correct 1 ms 5212 KB Output is correct
24 Correct 1 ms 5212 KB Output is correct
25 Correct 1 ms 5212 KB Output is correct
26 Correct 1 ms 5212 KB Output is correct
27 Correct 1 ms 5212 KB Output is correct
28 Correct 1 ms 5212 KB Output is correct
29 Correct 1 ms 5208 KB Output is correct
30 Correct 1 ms 5208 KB Output is correct
31 Correct 1 ms 5212 KB Output is correct
32 Correct 1 ms 5212 KB Output is correct
33 Correct 2 ms 5208 KB Output is correct
34 Correct 2 ms 5208 KB Output is correct
35 Correct 1 ms 5212 KB Output is correct
36 Correct 1 ms 5208 KB Output is correct
37 Correct 1 ms 5212 KB Output is correct
38 Correct 2 ms 5468 KB Output is correct
39 Correct 1 ms 5212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5724 KB Output is correct
2 Correct 1 ms 5212 KB Output is correct
3 Correct 1 ms 5212 KB Output is correct
4 Correct 3 ms 5724 KB Output is correct
5 Correct 1 ms 5212 KB Output is correct
6 Correct 1 ms 5212 KB Output is correct
7 Correct 1 ms 5212 KB Output is correct
8 Correct 1 ms 5212 KB Output is correct
9 Correct 18 ms 8320 KB Output is correct
10 Correct 1 ms 5208 KB Output is correct
11 Correct 1 ms 5212 KB Output is correct
12 Correct 1 ms 5212 KB Output is correct
13 Correct 1 ms 5212 KB Output is correct
14 Correct 1 ms 5212 KB Output is correct
15 Correct 1 ms 5212 KB Output is correct
16 Correct 1 ms 5212 KB Output is correct
17 Correct 1 ms 5212 KB Output is correct
18 Correct 1 ms 5208 KB Output is correct
19 Correct 1 ms 5208 KB Output is correct
20 Correct 1 ms 5212 KB Output is correct
21 Correct 1 ms 5212 KB Output is correct
22 Correct 1 ms 5212 KB Output is correct
23 Correct 1 ms 5212 KB Output is correct
24 Correct 1 ms 5464 KB Output is correct
25 Correct 1 ms 5212 KB Output is correct
26 Correct 1 ms 5212 KB Output is correct
27 Correct 1 ms 5208 KB Output is correct
28 Correct 1 ms 5208 KB Output is correct
29 Correct 1 ms 5212 KB Output is correct
30 Correct 1 ms 5212 KB Output is correct
31 Correct 1 ms 5212 KB Output is correct
32 Correct 1 ms 5288 KB Output is correct
33 Correct 1 ms 5212 KB Output is correct
34 Correct 1 ms 5212 KB Output is correct
35 Correct 1 ms 5468 KB Output is correct
36 Correct 1 ms 5212 KB Output is correct
37 Correct 1 ms 5212 KB Output is correct
38 Correct 1 ms 5212 KB Output is correct
39 Correct 2 ms 5212 KB Output is correct
40 Correct 1 ms 5208 KB Output is correct
41 Correct 1 ms 5468 KB Output is correct
42 Correct 1 ms 5296 KB Output is correct
43 Correct 1 ms 5468 KB Output is correct
44 Correct 15 ms 7032 KB Output is correct
45 Correct 11 ms 7040 KB Output is correct
46 Correct 8 ms 6552 KB Output is correct
47 Correct 5 ms 5724 KB Output is correct
48 Correct 4 ms 6236 KB Output is correct
49 Correct 18 ms 8272 KB Output is correct
50 Correct 13 ms 7932 KB Output is correct
51 Correct 16 ms 8148 KB Output is correct
52 Correct 24 ms 9420 KB Output is correct
53 Correct 9 ms 5212 KB Output is correct
54 Correct 23 ms 7968 KB Output is correct
55 Correct 9 ms 6584 KB Output is correct
56 Correct 22 ms 8228 KB Output is correct
57 Correct 27 ms 6232 KB Output is correct
58 Correct 22 ms 9548 KB Output is correct
59 Correct 25 ms 9588 KB Output is correct
60 Correct 9 ms 5632 KB Output is correct
61 Correct 4 ms 5724 KB Output is correct
62 Correct 5 ms 6276 KB Output is correct
63 Correct 8 ms 6504 KB Output is correct
64 Correct 9 ms 6508 KB Output is correct
65 Correct 4 ms 5212 KB Output is correct
66 Correct 17 ms 8536 KB Output is correct