This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
constexpr ll inf = 1e18;
ll S, bound;
struct State{
ll a1, d1, a2, d2;
bool operator==(const State& other) const {return a1==other.a1 && a2 == other.a2 && d1 == other.d1 && d2 == other.d2;}
};
State sab(State state){
return {state.a2, max(0ll, state.d2 - 1), state.a1, state.d1};
}
State att(State state){
return {state.a2 - (state.a1 - S*state.d2), state.d2, state.a1, state.d1};
}
bool half_sab_win(State state){
ll sab_cnt = state.d2 / 2;
state.a1 -= sab_cnt * (state.a2 - S*state.d1);
state.d2 -= sab_cnt;
state = att(state);
state.a1 -= state.d2 * (state.a2 - S*state.d1);
state.d2 = 0;
state = att(state);
ll alpha1 = state.a1 - S*state.d2;
ll beta2 = S - state.a2;
return alpha1 + state.d2 * beta2 >= S;
}
void dbg(State state){
cerr << state.a1 << " " << state.d1 << " " << state.a2 << " " << state.d2 << endl;
}
int calls = 0;
vector<vector<ll>> critA2;
vector<vector<vector<int>>> lookup; // (d1, d2, alpha2 - minAlpha2) -> d2' until which we sabotage
vector<ll> zeroLookup; // a2 -> min winning a1 (if d1 = d2 = 0)
bool afterPrecalc = false;
ll minAlpha2(ll d1, ll d2){
return S - min(S, 8*S/(d2*d2*max(1ll, d1)));
}
bool wins(State state){
if(afterPrecalc) calls++;
// trivial cases
if(state.a1 <= 0) return false;
if(state.a2 <= 0) return true;
if(state.d1 == 0 && state.d2 == 0 && state.a2 < S){
return state.a1 >= zeroLookup[state.a2];
}
// no one can attack
ll sab_rounds = (max(0ll, min(state.d2*S - state.a1, state.d1*S - state.a2)) + S-1) / S;
state.d1 -= sab_rounds;
state.d2 -= sab_rounds;
// player 1 can't attack and player 2 can't sabotage
if(state.a1 <= state.d2*S && state.d1 == 0 && state.a2 < S){
ll beta2 = S - state.a2;
ll rounds = (state.d2*S - state.a1 + beta2-1) / beta2;
state.d2 -= rounds;
state.a1 -= rounds * state.a2;
if(state.d2 < 0 || state.a1 <= 0) return false;
}
// player 1 can't attack
if(state.a1 <= state.d2*S) return !wins(sab(state));
// helpful values
ll alpha1 = state.a1 - S*state.d2;
ll alpha2 = state.a2 - S*state.d1;
ll beta2 = min(S, S - alpha2); // The inequalities work without min, but it's needed to prevent overflow!
// player 1 must attack
if(alpha1 >= S && alpha2 <= S) return true;
if(alpha2 >= S) return !wins(att(state));
if(state.d2 == 0) return !wins(att(state));
// Can player 1 win by repeated sabotage?
if(state.d2 >= S) return true; // prevent overflow!
if(alpha1 + state.d2 * beta2 >= S) return true;
// Prevent opponent win by repeated sabotage:
if(state.d1 > 0){
// (alpha2 - alpha1) + d1 * (S - alpha1) < S
// S * (d1 - 1) + alpha2 < alpha1 * (d1 + 1)
ll minAlpha1 = (S * (state.d1 - 1) + alpha2) / (state.d1 + 1);
ll sabs_todo = min(state.d2, (max(0ll, minAlpha1 - alpha1) + beta2-1) / beta2);
state.d2 -= sabs_todo;
state.a1 -= sabs_todo * alpha2;
}
alpha2 = state.a2 - S*state.d1;
// Can player 1 win by using half of his sabotages?
if(half_sab_win(state)) return true;
assert(state.d1 * state.d2 * state.d2 * (S - alpha2) <= 8*S);
if(state.d1 * state.d2 > bound){
dbg(state);
}
assert(state.d1 * state.d2 <= bound);
if(state.d2 == 0) return !wins(att(state));
ll crit = critA2[state.d1][state.d2];
if(alpha2 >= crit) return !wins(att(state));
if(state.d2 == 1) return !wins(sab(state)); // alpha2 < crit
// now we can use the lookup table
int sabs_todo = (int)state.d2 - lookup[state.d1][state.d2][alpha2 - minAlpha2(state.d1, state.d2)];
if(sabs_todo > state.d2){
dbg(state);
exit(0);
}
state.d2 -= sabs_todo;
state.a1 -= sabs_todo * alpha2;
assert(state.d2 >= 0);
// maybe we reached d2 == 1
if(state.d2 == 1){
if(alpha2 >= critA2[state.d1][state.d2]) return !wins(att(state));
else return !wins(sab(state));
}
return !wins(att(state));
}
// It can be proven that we need O(1) iterations when min(d1, d2) > 1
bool winsSafe(State state){
if(state.a1 <= state.d2*S) return !wins(sab(state));
if(state.d2 == 0) return !winsSafe(att(state));
return !wins(sab(state)) || !winsSafe(att(state));
}
// minimum alpha1 for which player1 wins if he sabotages
ll sabCrit(ll d1, ll d2, ll alpha2){
ll lo = 0, hi = S;
for(ll alpha1 = (lo + hi)/2; lo<hi; alpha1 = (lo + hi)/2){
if(!wins(sab({d2*S+alpha1, d1, d1*S+alpha2, d2}))) hi = alpha1;
else lo = alpha1+1;
}
return lo;
}
// minimum alpha1 for which player1 wins if he attacks
ll attCrit(ll d1, ll d2, ll alpha2){
ll lo = 0, hi = S;
for(ll alpha1 = (lo + hi)/2; lo<hi; alpha1 = (lo + hi)/2){
if(!winsSafe(att({d2*S+alpha1, d1, d1*S+alpha2, d2}))) hi = alpha1;
else lo = alpha1+1;
}
return lo;
}
// minimum alpha2 for which it is optimal for player 1 to attack
ll calcCritA2(ll d1, ll d2){
ll lo = S - S/d2, hi = S;
for(ll alpha2 = (lo+hi)/2; lo<hi; alpha2 = (lo+hi)/2){
ll sc = sabCrit(d1, d2, alpha2);
ll ac = attCrit(d1, d2, alpha2);
if(sc < ac || (sc == 0 && ac == 0)) lo = alpha2+1;
else hi = alpha2;
}
return lo;
}
ll wins2(State state){
// trivial cases
if(state.a1 <= 0) return false;
if(state.a2 <= 0) return true;
// no one can attack
ll sab_rounds = (max(0ll, min(state.d2*S - state.a1, state.d1*S - state.a2)) + S-1) / S;
state.d1 -= sab_rounds;
state.d2 -= sab_rounds;
// player 1 can't attack and player 2 can't sabotage
if(state.a1 <= state.d2*S && state.d1 == 0 && state.a2 < S){
ll beta2 = S - state.a2;
ll rounds = (state.d2*S - state.a1 + beta2-1) / beta2;
state.d2 -= rounds;
state.a1 -= rounds * state.a2;
if(state.d2 < 0 || state.a1 <= 0) return false;
}
// player 1 can't attack
if(state.a1 <= state.d2*S) return !wins2(sab(state));
// helpful values
ll alpha1 = state.a1 - S*state.d2;
ll alpha2 = state.a2 - S*state.d1;
ll beta2 = min(S, S - alpha2);
// player 1 must attack
if(alpha1 >= S && alpha2 <= S) return true;
if(alpha2 >= S) return !wins2(att(state));
if(state.d2 == 0) return !wins2(att(state));
// Can player 1 win by repeated sabotage?
if(state.d2 >= S) return true; // prevent overflow!
if(alpha1 + state.d2 * beta2 >= S) return true;
// Prevent opponent win by repeated sabotage:
if(state.d1 > 0){
// (alpha2 - alpha1) + d1 * (S - alpha1) < S
// S * (d1 - 1) + alpha2 < alpha1 * (d1 + 1)
ll minAlpha1 = (S * (state.d1 - 1) + alpha2) / (state.d1 + 1);
ll sabs_todo = min(state.d2, (max(0ll, minAlpha1 - alpha1) + beta2-1) / beta2);
state.d2 -= sabs_todo;
state.a1 -= sabs_todo * alpha2;
}
// Can player 1 win by using half of his sabotages?
if(half_sab_win(state)) return true;
while(state.d2 > 0){
if(state.d1 * state.d2 <= bound) return wins(state);
if(!wins(att(state))) return true;
state = att(sab(state));
}
return !wins(att(state));
}
bool win0(ll a1, ll a2){
if(a1 <= 0) return false;
if(a2 <= 0) return true;
return !win0(a2-a1, a1);
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
int Q;
cin >> S >> Q;
zeroLookup.resize(S);
{
ll a1 = 1;
for(ll a2 = 1; a2 < S; a2++){
while(a1 < S && !win0(a1, a2)) a1++;
zeroLookup[a2] = a1;
}
}
bound = 1; while(bound*bound <= 8*S) bound++;
critA2.assign(bound+1, vector<ll>(1, -1));
lookup.assign(bound+1, vector<vector<int>>(2));
vector<pair<ll, ll>> dvals;
for(ll d2 = 1; d2 <= bound; d2++){
for(ll d1 = 0; d1*d2 <= bound; d1++){
dvals.emplace_back(d1, d2);
critA2[d1].push_back(inf);
if(d2 > 1){
lookup[d1].push_back(vector<int>(S - minAlpha2(d1, d2), -1));
}
}
}
sort(dvals.begin(), dvals.end(), [](auto a, auto b){return a.first+a.second < b.first+b.second;});
for(auto [d1, d2] : dvals){
critA2[d1][d2] = calcCritA2(d1, d2);
if(d2 == 1) continue;
ll mi = minAlpha2(d1, d2);
for(ll alpha2 = max(mi, critA2[d1][d2]); alpha2 < S; alpha2++){
lookup[d1][d2][alpha2-mi] = (int)d2;
}
if(d2 == 2){
for(ll alpha2 = mi; alpha2 < critA2[d1][d2]; alpha2++){
lookup[d1][d2][alpha2-mi] = 1;
}
}
else{
ll oldMi = minAlpha2(d1, d2-1);
for(ll alpha2 = mi; alpha2 < critA2[d1][d2]; alpha2++){
lookup[d1][d2][alpha2-mi] = lookup[d1][d2-1][alpha2-oldMi];
}
}
}
afterPrecalc = true;
cerr << dvals.size() << "\n";
for(int q = 0; q < Q; q++){
ll a1, d1, a2, d2;
cin >> a1 >> d1 >> a2 >> d2;
cout << (wins2({a1, d1, a2, d2}) ? "YES" : "NO") << "\n";
}
cerr << calls << "\n";
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |