#include "garden.h"
#include "gardenlib.h"
#include <stdbool.h>
#include <assert.h>
void floyds(const int *G, int u, int v, /*out*/ int *cyc, /*out*/ int *rem) {
assert(rem[u] == 0 && u != v);
bool seen = false;
int d = 0;
int slo = u, fas = u;
do {
slo = G[slo];
fas = G[G[fas]];
if (!seen) d++;
if (rem[slo] != 0) {
if (seen) {
for (; u != G[v]; u = G[u])
rem[u] = d--;
assert(d == -1);
}
for (; u != slo; u = G[u]) {
if (rem[slo] == -1)
rem[u] = -1;
else
rem[u] = rem[slo] + d--;
}
assert(seen || rem[slo] == -1 || d == 0);
return;
}
rem[slo] = -1;
seen = seen || slo == v;
} while (slo != fas);
rem[u] = -1;
int c = 0;
bool in_cyc = false;
do {
slo = G[slo];
rem[slo] = -1;
seen = seen || slo == v;
in_cyc = in_cyc || slo == v;
c++;
} while (slo != fas);
if (in_cyc) {
*cyc = c;
slo = G[v];
for (int i = 1; i <= c; i++) {
rem[slo] = c - i;
slo = G[slo];
}
assert(slo == G[v]);
}
if (seen) {
// find start of cycle and distance to start of cycle
d = 0;
slo = u;
for (; slo != fas; slo = G[slo], fas = G[fas])
d++;
for (; u != slo; u = G[u])
rem[u] = rem[slo] + d--;
assert(d == 0);
}
}
void count_routes(int N, int M, int P, int R[][2], int Q, int G[]) {
static int most_beautiful[150001][2];
static int graph[300001];
static int rem[2][300001];
int cyc[2];
cyc[0] = cyc[1] = 1e9 + 1;
// 1 indexing, graph[u] == 0, means no edges connected to it
P++;
// save 2 most_beautiful edges
for (int i = 0; i < M; i++) {
for (int j = 0; j < 2; j++) {
int u = R[i][j] + 1;
int v = R[i][j^1] + 1;
if (most_beautiful[u][0] == 0) {
most_beautiful[u][0] = v;
} else if (most_beautiful[u][1] == 0) {
most_beautiful[u][1] = v;
}
}
}
// build functional graph
for (int u = 1; u <= N; u++) {
for (int j = 0; j < 2; j++) {
int v = most_beautiful[u][j];
if (most_beautiful[v][0] != u || most_beautiful[v][1] == 0)
graph[u + j*N] = v;
else
graph[u + j*N] = v + N;
}
}
for (int i = 0; i < 2; i++)
for (int j = 1; j <= N; j++)
if (rem[i][j] == 0 && j != P + i*N)
floyds(graph, j, P + i*N, cyc + i, rem[i]);
for (int i = 0; i < Q; i++) {
int res = 0;
for (int j = 0; j < 2; j++) {
for (int k = 1; k <= N; k++) {
if (rem[j][k] == -1) continue;
res += rem[j][k] <= G[i] && (G[i] - rem[j][k]) % cyc[j] == 0;
}
}
answer(res);
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
3 ms |
1116 KB |
Output is correct |
12 |
Correct |
7 ms |
1624 KB |
Output is correct |
13 |
Correct |
14 ms |
3676 KB |
Output is correct |
14 |
Correct |
20 ms |
4616 KB |
Output is correct |
15 |
Correct |
21 ms |
4696 KB |
Output is correct |
16 |
Correct |
18 ms |
3664 KB |
Output is correct |
17 |
Correct |
17 ms |
3164 KB |
Output is correct |
18 |
Correct |
8 ms |
1880 KB |
Output is correct |
19 |
Correct |
22 ms |
5724 KB |
Output is correct |
20 |
Correct |
22 ms |
5648 KB |
Output is correct |
21 |
Correct |
20 ms |
4180 KB |
Output is correct |
22 |
Correct |
21 ms |
3676 KB |
Output is correct |
23 |
Correct |
22 ms |
5204 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
348 KB |
Output is correct |
8 |
Correct |
0 ms |
348 KB |
Output is correct |
9 |
Correct |
1 ms |
348 KB |
Output is correct |
10 |
Correct |
0 ms |
348 KB |
Output is correct |
11 |
Correct |
3 ms |
1116 KB |
Output is correct |
12 |
Correct |
7 ms |
1624 KB |
Output is correct |
13 |
Correct |
14 ms |
3676 KB |
Output is correct |
14 |
Correct |
20 ms |
4616 KB |
Output is correct |
15 |
Correct |
21 ms |
4696 KB |
Output is correct |
16 |
Correct |
18 ms |
3664 KB |
Output is correct |
17 |
Correct |
17 ms |
3164 KB |
Output is correct |
18 |
Correct |
8 ms |
1880 KB |
Output is correct |
19 |
Correct |
22 ms |
5724 KB |
Output is correct |
20 |
Correct |
22 ms |
5648 KB |
Output is correct |
21 |
Correct |
20 ms |
4180 KB |
Output is correct |
22 |
Correct |
21 ms |
3676 KB |
Output is correct |
23 |
Correct |
22 ms |
5204 KB |
Output is correct |
24 |
Correct |
1 ms |
344 KB |
Output is correct |
25 |
Correct |
70 ms |
1116 KB |
Output is correct |
26 |
Correct |
120 ms |
1624 KB |
Output is correct |
27 |
Correct |
639 ms |
3780 KB |
Output is correct |
28 |
Correct |
662 ms |
4700 KB |
Output is correct |
29 |
Correct |
774 ms |
4716 KB |
Output is correct |
30 |
Correct |
466 ms |
3672 KB |
Output is correct |
31 |
Correct |
448 ms |
3340 KB |
Output is correct |
32 |
Correct |
121 ms |
1884 KB |
Output is correct |
33 |
Correct |
667 ms |
5756 KB |
Output is correct |
34 |
Correct |
737 ms |
5972 KB |
Output is correct |
35 |
Correct |
916 ms |
4184 KB |
Output is correct |
36 |
Correct |
764 ms |
3676 KB |
Output is correct |
37 |
Correct |
552 ms |
5208 KB |
Output is correct |
38 |
Correct |
1804 ms |
6228 KB |
Output is correct |