Submission #1023106

# Submission time Handle Problem Language Result Execution time Memory
1023106 2024-07-14T09:46:05 Z vjudge1 Catfish Farm (IOI22_fish) C++17
67 / 100
1000 ms 1819848 KB
#include "fish.h"
#include <bits/stdc++.h>

#pragma GCC optimize("Ofast")

using namespace std;

#define ll long long
#define pb push_back
#define F first
#define S second
#define all(v) v.begin(),v.end()
#define sz(s) (int)s.size()
#define lb lower_bound
#define ub upper_bound
#define mem(a,i) memset(a,i,sizeof(a))

const int MAX=2e5+10;

int n;
vector<pair<ll,ll>> y[MAX];
vector<ll> p[MAX];
vector<vector<ll>> dp[MAX];
vector<ll> can[MAX];

ll getSum(int x,ll l,ll r){
    if(l>r)return 0;
    int L=lb(all(y[x]),make_pair(l,0ll))-y[x].begin();
    int R=ub(all(y[x]),make_pair(r+1,0ll))-y[x].begin()-1;
    if(L<=R){
        if(L==0)return p[x][R];
        return p[x][R]-p[x][L-1];
    }
    return 0;
}

vector<vector<ll>> sumF[MAX];
vector<vector<ll>> sumB[MAX];
vector<pair<int,int>> vec[MAX];
vector<vector<ll>> w;

struct t300{

    ll dp[3010][3010][2];

    ll getP(int i,int l,int r){
        if(l>r||i==0)return 0;
        return p[i][r]-p[i][l-1];
    }

    ll solve300(){
        for(int i=1;i<=n;i++){
            p[i].resize(n+10);
            p[i][0]=0;
            for(int j=1;j<=n;j++){
                p[i][j]=p[i][j-1]+w[i][j];
            }
        }
        mem(dp,0);
        for(int i=2;i<=n;i++){
            {
                ll mx=0;
                for(int j=n;j>=0;j--){
                    mx=max(mx,max(dp[i-1][j][0],dp[i-1][j][1])+p[i][j]);
                    dp[i][j][0]=mx-p[i][j];
                }

            }
            {
                ll mx=0;
                for(int j=0;j<=n;j++){
                    mx=max(mx,dp[i-1][j][1]-p[i-1][j]);
                    dp[i][j][1]=mx+p[i-1][j];
                    dp[i][j][1]=max(dp[i][j][1],dp[i-1][0][0]);
                }
                
            }
            // for(int j=0;j<=n;j++){
            //     {
            //         for(int f=0;f<=j;f++){
            //             dp[i][j][1]=max(dp[i][j][1],dp[i-1][f][1]+getP(i-1,f+1,j));
            //         }
            //         dp[i][j][1]=max(dp[i][j][1],dp[i-1][0][0]);
            //     }
            // }
        }
        ll ans=0;
        for(int j=0;j<=n;j++)ans=max(ans,max(dp[n][j][0],dp[n][j][1]));
        return ans;
    }
};


long long max_weights(int N, int M, vector<int> X, vector<int> Y,vector<int> W) {
    // assert(N<=300);
    n=N;
    int MX=0;
    bool sub=1;
    for(int i=0;i<M;i++){
        X[i]++;
        Y[i]++;
        y[X[i]].pb({Y[i],i});
        vec[Y[i]].pb({X[i],W[i]});
        sub&=(X[i]%2==1);
        MX=max(MX,X[i]);
    }
    if(sub){
        ll ans=0;
        for(int i=0;i<M;i++)ans+=W[i];
        return ans;
    }
    if(MX<=2){
        if(N==2){
            ll f=0,f1=0;
            for(int i=0;i<M;i++){
                if(X[i]%2)f+=W[i];
                else f1+=W[i];
            }
            return max(f,f1);
        }
        ll sum=0;
        for(int i=0;i<M;i++){
            if(X[i]%2==0)sum+=W[i];
        }
        ll ans=sum;
        for(int i=1;i<=N;i++){
            for(auto [x,w]:vec[i]){
                if(x%2==1)sum+=w;
                else sum-=w;
            }
            ans=max(ans,sum);
        }
        return ans;
    }
    for(int i=1;i<=N;i++){
        if(y[i].empty())continue;
        sort(all(y[i]));
        p[i].pb(W[y[i][0].S]);
        for(int j=1;j<sz(y[i]);j++){
            p[i].pb(p[i].back()+W[y[i][j].S]);
        }
    }
    if(N<=300){
        w.resize(N+10);
        for(int i=1;i<=n;i++){
            w[i].resize(n+10);
            for(int j=1;j<=n;j++){
                w[i][j]=0;
            }
            for(auto [pos,num]:y[i])w[i][pos]=W[num];
        }
        t300 FFF;
        return FFF.solve300();
    }
    can[0].pb(0);
    can[N+1].pb(0);
    for(int i=1;i<=N;i++){
        can[i].pb(0);
        if(i>0){
            for(auto [x,b]:y[i-1])can[i].pb(x);
        }
        if(i+1<=N){
            for(auto [x,b]:y[i+1])can[i].pb(x);
        }
        sort(all(can[i]));
        can[i].erase(unique(all(can[i])),can[i].end());
    }
    for(int i=1;i<=N+1;i++){
        dp[i].resize(sz(can[i]));
        for(int j=0;j<sz(dp[i]);j++){
            dp[i][j].resize(sz(can[i-1]));
            for(int k=0;k<sz(can[i-1]);k++){
                dp[i][j][k]=0;
            }
        }
    }
    for(int i=0;i<N;i++){
        sumF[i].resize(sz(can[i]));
        for(int j=0;j<sz(can[i]);j++){
            sumF[i][j].resize(sz(can[i+1]));
            for(int k=0;k<sz(can[i+1]);k++){
                sumF[i][j][k]=getSum(i+1,can[i+1][k]+1,can[i][j]);
            }
        }
    }
    for(int i=1;i<=N+1;i++){
        sumB[i].resize(sz(can[i]));
        for(int j=0;j<sz(can[i]);j++){
            sumB[i][j].resize(sz(can[i-1]));
            for(int k=0;k<sz(can[i-1]);k++){
                sumB[i][j][k]=getSum(i-1,can[i-1][k]+1,can[i][j]);
            }
        }
    }
    for(int i=1;i<=N;i++){
        for(int j=0;j<sz(can[i]);j++){
            for(int k=0;k<sz(can[i-1]);k++){
                for(int f=0;f<sz(can[i+1]);f++){
                    ll nxt=dp[i][j][k];
                    {
                        nxt+=max(sumF[i-1][k][j],sumB[i+1][f][j]);
                    }
                    dp[i+1][f][j]=max(dp[i+1][f][j],nxt);
                }
            }
        }
    }
    ll ans=0;
    for(int j=0;j<sz(can[N]);j++)ans=max(ans,dp[N+1][0][j]);
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 105 ms 180952 KB Output is correct
2 Correct 109 ms 181956 KB Output is correct
3 Correct 86 ms 174928 KB Output is correct
4 Correct 82 ms 174932 KB Output is correct
5 Correct 168 ms 191908 KB Output is correct
6 Correct 192 ms 194132 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 85 ms 174928 KB Output is correct
2 Correct 126 ms 184636 KB Output is correct
3 Correct 142 ms 186088 KB Output is correct
4 Correct 114 ms 180932 KB Output is correct
5 Correct 131 ms 182060 KB Output is correct
6 Correct 86 ms 174884 KB Output is correct
7 Correct 90 ms 174928 KB Output is correct
8 Correct 86 ms 175068 KB Output is correct
9 Correct 89 ms 174928 KB Output is correct
10 Correct 85 ms 174928 KB Output is correct
11 Correct 85 ms 174900 KB Output is correct
12 Correct 108 ms 180936 KB Output is correct
13 Correct 115 ms 182144 KB Output is correct
14 Correct 110 ms 180796 KB Output is correct
15 Correct 110 ms 180036 KB Output is correct
16 Correct 112 ms 180796 KB Output is correct
17 Correct 119 ms 181244 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 85 ms 174932 KB Output is correct
2 Correct 114 ms 196944 KB Output is correct
3 Correct 160 ms 211440 KB Output is correct
4 Correct 143 ms 208328 KB Output is correct
5 Correct 183 ms 226756 KB Output is correct
6 Correct 175 ms 226760 KB Output is correct
7 Correct 191 ms 226748 KB Output is correct
8 Correct 189 ms 226756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 174928 KB Output is correct
2 Correct 97 ms 174928 KB Output is correct
3 Correct 86 ms 174932 KB Output is correct
4 Correct 89 ms 175044 KB Output is correct
5 Correct 91 ms 174932 KB Output is correct
6 Correct 95 ms 174928 KB Output is correct
7 Correct 88 ms 175024 KB Output is correct
8 Correct 90 ms 175052 KB Output is correct
9 Correct 99 ms 175352 KB Output is correct
10 Correct 90 ms 176552 KB Output is correct
11 Correct 93 ms 175444 KB Output is correct
12 Correct 102 ms 176468 KB Output is correct
13 Correct 103 ms 175176 KB Output is correct
14 Correct 98 ms 176468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 174928 KB Output is correct
2 Correct 97 ms 174928 KB Output is correct
3 Correct 86 ms 174932 KB Output is correct
4 Correct 89 ms 175044 KB Output is correct
5 Correct 91 ms 174932 KB Output is correct
6 Correct 95 ms 174928 KB Output is correct
7 Correct 88 ms 175024 KB Output is correct
8 Correct 90 ms 175052 KB Output is correct
9 Correct 99 ms 175352 KB Output is correct
10 Correct 90 ms 176552 KB Output is correct
11 Correct 93 ms 175444 KB Output is correct
12 Correct 102 ms 176468 KB Output is correct
13 Correct 103 ms 175176 KB Output is correct
14 Correct 98 ms 176468 KB Output is correct
15 Correct 99 ms 176468 KB Output is correct
16 Correct 99 ms 175260 KB Output is correct
17 Correct 119 ms 179268 KB Output is correct
18 Correct 108 ms 179860 KB Output is correct
19 Correct 106 ms 179536 KB Output is correct
20 Correct 110 ms 179536 KB Output is correct
21 Correct 112 ms 179492 KB Output is correct
22 Correct 145 ms 182856 KB Output is correct
23 Correct 96 ms 177160 KB Output is correct
24 Correct 100 ms 178088 KB Output is correct
25 Correct 94 ms 176608 KB Output is correct
26 Correct 94 ms 176976 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 174928 KB Output is correct
2 Correct 97 ms 174928 KB Output is correct
3 Correct 86 ms 174932 KB Output is correct
4 Correct 89 ms 175044 KB Output is correct
5 Correct 91 ms 174932 KB Output is correct
6 Correct 95 ms 174928 KB Output is correct
7 Correct 88 ms 175024 KB Output is correct
8 Correct 90 ms 175052 KB Output is correct
9 Correct 99 ms 175352 KB Output is correct
10 Correct 90 ms 176552 KB Output is correct
11 Correct 93 ms 175444 KB Output is correct
12 Correct 102 ms 176468 KB Output is correct
13 Correct 103 ms 175176 KB Output is correct
14 Correct 98 ms 176468 KB Output is correct
15 Correct 99 ms 176468 KB Output is correct
16 Correct 99 ms 175260 KB Output is correct
17 Correct 119 ms 179268 KB Output is correct
18 Correct 108 ms 179860 KB Output is correct
19 Correct 106 ms 179536 KB Output is correct
20 Correct 110 ms 179536 KB Output is correct
21 Correct 112 ms 179492 KB Output is correct
22 Correct 145 ms 182856 KB Output is correct
23 Correct 96 ms 177160 KB Output is correct
24 Correct 100 ms 178088 KB Output is correct
25 Correct 94 ms 176608 KB Output is correct
26 Correct 94 ms 176976 KB Output is correct
27 Correct 113 ms 176980 KB Output is correct
28 Execution timed out 1137 ms 1819848 KB Time limit exceeded
29 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 85 ms 174932 KB Output is correct
2 Correct 114 ms 196944 KB Output is correct
3 Correct 160 ms 211440 KB Output is correct
4 Correct 143 ms 208328 KB Output is correct
5 Correct 183 ms 226756 KB Output is correct
6 Correct 175 ms 226760 KB Output is correct
7 Correct 191 ms 226748 KB Output is correct
8 Correct 189 ms 226756 KB Output is correct
9 Correct 273 ms 243024 KB Output is correct
10 Correct 178 ms 212032 KB Output is correct
11 Correct 250 ms 248884 KB Output is correct
12 Correct 113 ms 174952 KB Output is correct
13 Correct 87 ms 174932 KB Output is correct
14 Correct 88 ms 174932 KB Output is correct
15 Correct 88 ms 174932 KB Output is correct
16 Correct 91 ms 174956 KB Output is correct
17 Correct 95 ms 174928 KB Output is correct
18 Correct 100 ms 174932 KB Output is correct
19 Correct 87 ms 174880 KB Output is correct
20 Correct 123 ms 196948 KB Output is correct
21 Correct 118 ms 196828 KB Output is correct
22 Correct 237 ms 246076 KB Output is correct
23 Correct 312 ms 291412 KB Output is correct
24 Correct 314 ms 301644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 105 ms 180952 KB Output is correct
2 Correct 109 ms 181956 KB Output is correct
3 Correct 86 ms 174928 KB Output is correct
4 Correct 82 ms 174932 KB Output is correct
5 Correct 168 ms 191908 KB Output is correct
6 Correct 192 ms 194132 KB Output is correct
7 Correct 85 ms 174928 KB Output is correct
8 Correct 126 ms 184636 KB Output is correct
9 Correct 142 ms 186088 KB Output is correct
10 Correct 114 ms 180932 KB Output is correct
11 Correct 131 ms 182060 KB Output is correct
12 Correct 86 ms 174884 KB Output is correct
13 Correct 90 ms 174928 KB Output is correct
14 Correct 86 ms 175068 KB Output is correct
15 Correct 89 ms 174928 KB Output is correct
16 Correct 85 ms 174928 KB Output is correct
17 Correct 85 ms 174900 KB Output is correct
18 Correct 108 ms 180936 KB Output is correct
19 Correct 115 ms 182144 KB Output is correct
20 Correct 110 ms 180796 KB Output is correct
21 Correct 110 ms 180036 KB Output is correct
22 Correct 112 ms 180796 KB Output is correct
23 Correct 119 ms 181244 KB Output is correct
24 Correct 85 ms 174932 KB Output is correct
25 Correct 114 ms 196944 KB Output is correct
26 Correct 160 ms 211440 KB Output is correct
27 Correct 143 ms 208328 KB Output is correct
28 Correct 183 ms 226756 KB Output is correct
29 Correct 175 ms 226760 KB Output is correct
30 Correct 191 ms 226748 KB Output is correct
31 Correct 189 ms 226756 KB Output is correct
32 Correct 86 ms 174928 KB Output is correct
33 Correct 97 ms 174928 KB Output is correct
34 Correct 86 ms 174932 KB Output is correct
35 Correct 89 ms 175044 KB Output is correct
36 Correct 91 ms 174932 KB Output is correct
37 Correct 95 ms 174928 KB Output is correct
38 Correct 88 ms 175024 KB Output is correct
39 Correct 90 ms 175052 KB Output is correct
40 Correct 99 ms 175352 KB Output is correct
41 Correct 90 ms 176552 KB Output is correct
42 Correct 93 ms 175444 KB Output is correct
43 Correct 102 ms 176468 KB Output is correct
44 Correct 103 ms 175176 KB Output is correct
45 Correct 98 ms 176468 KB Output is correct
46 Correct 99 ms 176468 KB Output is correct
47 Correct 99 ms 175260 KB Output is correct
48 Correct 119 ms 179268 KB Output is correct
49 Correct 108 ms 179860 KB Output is correct
50 Correct 106 ms 179536 KB Output is correct
51 Correct 110 ms 179536 KB Output is correct
52 Correct 112 ms 179492 KB Output is correct
53 Correct 145 ms 182856 KB Output is correct
54 Correct 96 ms 177160 KB Output is correct
55 Correct 100 ms 178088 KB Output is correct
56 Correct 94 ms 176608 KB Output is correct
57 Correct 94 ms 176976 KB Output is correct
58 Correct 113 ms 176980 KB Output is correct
59 Execution timed out 1137 ms 1819848 KB Time limit exceeded
60 Halted 0 ms 0 KB -