Submission #1018021

#TimeUsernameProblemLanguageResultExecution timeMemory
1018021andrei_iorgulescuPalembang Bridges (APIO15_bridge)C++14
0 / 100
123 ms262144 KiB
#include <bits/stdc++.h> using namespace std; using ll = long long; ll inf = (ll)1e9 * (ll)1e9; int tuf = (int)2e9 + 1; const int NN = 6200000; int n,k; char p[100005],q[100005]; int s[100005],t[100005]; ll ans; ll real_value[200005]; int m; int cate_r[200005],sum_r[200005],cate_l[200005],sum_l[200005]; void normalize() { set<int> vls; for (int i = 1; i <= n; i++) { vls.insert(s[i]); vls.insert(t[i]); } map<int,int> norma; int itr = 0; for (auto it : vls) { itr++; norma[it] = itr; real_value[itr] = it; } m = itr; for (int i = 1; i <= n; i++) s[i] = norma[s[i]],t[i] = norma[t[i]]; } int y_opt[200005]; pair<int,ll> aint[NN + 5]; int fs[NN + 5],fd[NN + 5]; int roots1[200005],roots2[200005]; int cate; pair<int,ll> query(int nod, int l, int r, int st, int dr) { if (aint[nod].first == 0) return {0,0}; if (r < st or dr < l) return {0,0}; if (st <= l and r <= dr) return aint[nod]; int mij = (ll)(l + r) / 2; pair<int,ll> p1 = query(fs[nod],l,mij,st,dr),p2 = query(fd[nod],mij + 1,r,st,dr); return {p1.first + p2.first,p1.second + p2.second}; } void update(int nod, int l, int r, int pos, int val) { if (l == r) { aint[nod].first++; aint[nod].second += val; } else { int mij = (ll)(l + r) / 2; if (pos <= mij) { cate++; aint[cate] = aint[fs[nod]]; fs[cate] = fs[fs[nod]]; fd[cate] = fd[fs[nod]]; fs[nod] = cate; update(fs[nod],l,mij,pos,val); } else { cate++; aint[cate] = aint[fd[nod]]; fs[cate] = fs[fd[nod]]; fd[cate] = fd[fd[nod]]; fd[nod] = cate; update(fd[nod],mij + 1,r,pos,val); } aint[nod] = {aint[fs[nod]].first + aint[fd[nod]].first,aint[fs[nod]].second + aint[fd[nod]].second}; } } ll f(int x,int y) { ll dev = 0; dev += real_value[x] * cate_r[x - 1] - sum_r[x - 1]; dev += sum_l[y + 1] - real_value[y] * cate_l[y + 1]; pair<int,ll> p1 = query(roots1[x],0,tuf,0,real_value[x] + real_value[y]);///.first = cate, .second = suma L-urilor reale pair<int,ll> p2 = query(roots2[y],0,tuf,real_value[x] + real_value[y] + 1,tuf);///.first = cate, .second = suma R-urilor reale dev += p1.second - p1.first * real_value[x]; dev += p2.first * real_value[y] - p2.second; dev *= 2; return dev; } void solve(int l, int r, int st, int dr) { if (l > r) return; int mij = (l + r) / 2; ll bst = inf; for (int i = st; i <= dr; i++) { ll cat = f(mij,i); if (cat < bst) { bst = cat; y_opt[mij] = i; } } solve(l,mij - 1,st,y_opt[mij]); solve(mij + 1,r,y_opt[mij],dr); } vector<pair<int,int>> cine_r[200005],cine_l[200005]; signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> k >> n; for (int i = 1; i <= n; i++) { cin >> p[i] >> s[i] >> q[i] >> t[i]; if (s[i] > t[i]) swap(s[i],t[i]); ans += t[i] - s[i]; if (p[i] == q[i]) n--,i--; } ans += n; if (n <= k) { cout << ans << '\n'; return 0; } normalize(); //for (int i = 1; i <= n; i++) // cout << s[i] << ' ' << t[i] << endl; for (int i = 1; i <= n; i++) { cine_l[s[i]].push_back({s[i],t[i]}); cine_r[t[i]].push_back({s[i],t[i]}); } for (int i = 1; i <= n; i++) { cate_r[t[i]]++; sum_r[t[i]] += real_value[t[i]]; cate_l[s[i]]++; sum_l[s[i]] += real_value[s[i]]; } for (int i = 1; i <= m; i++) { cate_r[i] += cate_r[i - 1]; sum_r[i] += sum_r[i - 1]; } for (int i = m; i >= 1; i--) { cate_l[i] += cate_l[i + 1]; sum_l[i] += sum_l[i + 1]; } if (k == 1) { ll devmin = inf; for (int i = 1; i <= m; i++) { ll cr = cate_r[i - 1],sr = sum_r[i - 1],cl = cate_l[i + 1],sl = sum_l[i + 1]; //cout << cr << ' ' << sr << ' ' << cl << ' ' << sl << endl; ll x = real_value[i]; ll dev = 2 * (x * cr - sr + sl - x * cl); devmin = min(devmin,dev); } cout << ans + devmin; } else { cate = 2 * m; for (int i = 1; i <= m; i++) roots1[i] = i; for (int i = 1; i <= m; i++) roots2[i] = i + m; for (int x = m; x >= 1; x--) { aint[x] = aint[x + 1]; fs[x] = fs[x + 1]; fd[x] = fd[x + 1]; for (auto interval : cine_l[x + 1]) update(x,0,tuf,real_value[interval.first] + real_value[interval.second],real_value[interval.first]); } for (int y = m + 1; y <= 2 * m; y++) { if (y != m + 1) { aint[y] = aint[y - 1]; fs[y] = fs[y - 1]; fd[y] = fd[y - 1]; } for (auto interval : cine_r[y - m - 1]) update(y,0,tuf,real_value[interval.first] + real_value[interval.second],real_value[interval.second]); } solve(1,m,1,m); ll devmin = inf; for (int i = 1; i <= m; i++) devmin = min(devmin,f(i,y_opt[i])); cout << ans + devmin; } return 0; } /* 2 5 A 0 B 2 A 6 B 8 A 11 B 13 A 9 B 15 A 13 B 19 */ /** Obs: merita sa fac pod doar unde e cv cladire, adica in O(N) locatii Initial adun abs(S[i] - T[i]) la toate, fac S[i] <= T[i], daca P[i] = Q[i] il elimin, altfel mai adaug 1 si presupun P[i] = A, Q[i] = B N o sa fie cate intervale au P[i] != Q[i] K = 1 -> fixez unde fac podul, vad cate au R in stanga si suma R-urilor, cate au L in dreapta si suma L-urilor, cv formula K = 2 Fie x si y locatiile (dintre cele O(N)) in care imi fac podurile Cred (doamne ajuta adica) ca daca imi fixez un x, y_opt(x) e crescator (divide dp stuff) Hai sa zicem ca am eu o functie magica f(x,y) care imi calculeaza suma devierilor daca fac poduri in x si y Pai f(x,y) functioneaza gen: ia toate alea cu R < x si zice cate si suma, toate cu L > y si zice cate si suma etc penal Problema apare la alea x < L <= R < y ca am min(L - x, y - R) Aici, zic asa: fie mij = r[x] + r[y] (omit / 2 ca nu conteaza) si m = r[L] + r[R] Daca m <= mij, L - x e minim, altfel R - y e minim Atunci f(x,y) zice: gaseste toti aia cu L > x si m <= mij si zi cati si suma L-urilor (oricum asta imi garanteaza y < R) Apoi, gaseste toti aia cu R < y si m > mij si zi cati si suma R-urilor (once again, asta garanteaza L > x) In functie de chestiile alea am o formula penala pentru f(x,y) Pai nu am update-uri sau ceva, deci pot sa ma uit asa: - pentru alea cu R < x, doar imi tin ceva cate_r[x] si sum_r[x] (cate r < x si suma valorilor lor reale) - pentru alea cu L > y, ceva analog pe sufixe - pentru cate L > x si m <= mij, dat fiind ca nu am update-uri pot sa ma uit in versiunea x si sa intreb chestii pe m <= mij Adica sa imi tin un aint persistent in care merg cu x de la m la 1 si imi tin pentru fiecare, structura pe alea cu L mai mare -pentru R < y, m > mij, tot asa, un aint persistent de merg cu y de la 1 la m si tin strucura pe m cu alea cu R < y Astfel, am o precalculare O(NlogN) timp si memorie si O(logN) timp pe query, deci Nlog^2 total Hai ca mai stie cineva sa implementeze aint persistent **/
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...