Submission #1017905

# Submission time Handle Problem Language Result Execution time Memory
1017905 2024-07-09T11:16:01 Z stefanopulos Sličnost (COI23_slicnost) C++17
50 / 100
225 ms 52592 KB
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bits/stdc++.h>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ldb;
 
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ldb,ldb> pdd;
 
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define fb(i,b,a) for(int i = b; i >= a; i--)
#define trav(a,x) for(auto& a : x)
 
#define sz(a) (int)(a).size()
#define fi first
#define se second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
// os.order_of_key(k) the number of elements in the os less than k
// *os.find_by_order(k)  print the k-th smallest number in os(0-based)
 
const int mod = 1000000007;
const int inf = 1e9 + 5;
const int mxN = 100005; 
 
int n, k, q;
int A[mxN];
int B[mxN];
 
int poz[mxN];
 
int L[mxN];
int R[mxN];
 
int idx = 0;
int ls[200 * mxN], rs[100 * mxN], root[100 * mxN];
int mx[100 * mxN], sum[100 * mxN], cnt[100 * mxN];
void build(int& v, int tl, int tr){
    v = ++idx;
    if(tl == tr){
        mx[v] = sum[v] = 0;
        cnt[v] = 1;
        return;
    }
    int mid = (tl + tr) / 2;
    build(ls[v], tl, mid); build(rs[v], mid + 1, tr);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);
}

void update(int& v, int rv, int tl, int tr, int pos, int val){
    v = ++idx; ls[v] = ls[rv]; rs[v] = rs[rv]; mx[v] = mx[rv]; sum[v] = sum[rv]; cnt[v] = cnt[rv];
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], ls[rv], tl, mid, pos, val);
    else update(rs[v], rs[rv], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

void update(int v, int tl, int tr, int pos, int val){
    if(!v){
        v = ++idx;
        mx[v] = sum[v] = 0;
        cnt[v] = 1;
    }
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], tl, mid, pos, val);
    else update(rs[v], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

struct SegTree{
    ll bor[4 * mxN][2];
    void update(int v, int tl, int tr, int pos, int val, ll cnt){
        if(tl == tr){
            bor[v][0] = val;
            bor[v][1] = cnt;
            return;
        }
        int mid = (tl + tr) / 2;
        if(pos <= mid)update(v * 2, tl, mid, pos, val, cnt);
        else update(v * 2 + 1, mid + 1, tr, pos, val, cnt);
        bor[v][0] = max(bor[v * 2][0], bor[v * 2 + 1][0]);
        bor[v][1] = (bor[v][0] == bor[v * 2][0] ? bor[v * 2][1] : 0) + (bor[v][0] == bor[v * 2 + 1][0] ? bor[v * 2 + 1][1] : 0);
    }
}drvo;

void calc(){

    idx = 0;
    build(root[k],1,n - k + 1);
    ff(i,1,k){
        int l = L[poz[A[i]]];
        int r = R[poz[A[i]]];
        update(root[k],root[k],1,n - k + 1,l,1);
        if(r < n - k + 1)update(root[k],1,n - k + 1,r + 1,-1);
    }
    
    drvo.update(1,1,n - k + 1,1,mx[root[k]],cnt[root[k]]);
    ff(i,k + 1,n){
        int l1 = L[poz[A[i - k]]];
        int r1 = R[poz[A[i - k]]];
        update(root[i],root[i - 1],1,n - k + 1,l1,-1);
        if(r1 < n - k + 1)update(root[i],1,n - k + 1,r1 + 1,1);
 
        int l2 = L[poz[A[i]]];
        int r2 = R[poz[A[i]]];
        update(root[i],1,n - k + 1,l2,1);
        if(r2 < n - k + 1)update(root[i],1,n - k + 1,r2 + 1,-1);

        drvo.update(1,1,n - k + 1,i - k + 1,mx[root[i]],cnt[root[i]]);

    }
 
}
 
int main(){
    cin.tie(0)->sync_with_stdio(0);
 
    cin >> n >> k >> q;
    ff(i,1,n)cin >> A[i];
    ff(i,1,n)cin >> B[i], poz[B[i]] = i;
 
    ff(i,1,n){
        L[i] = max(1, i - k + 1);
        R[i] = min(i, n - k + 1);
    }
 
    calc();
 
    int najv = drvo.bor[1][0]; ll br = drvo.bor[1][1];
    cout << najv << " " << br << '\n';
    while(q--){
        int t;
        cin >> t;

        if(t - k + 1 >= 1){
            int x = t;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t]]];
            int r1 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t + 1]]];
            int r2 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }
 
        if(t + k <= n){
            int x = t + k;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t + 1]]];
            int r1 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t]]];
            int r2 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }

        swap(A[t], A[t + 1]);

        najv = drvo.bor[1][0]; br = drvo.bor[1][1];
        cout << najv << " " << br << '\n';
 
    }
 
    return 0;
}
/*
 
4 3 0
2 4 1 3
1 2 3 4


5 3 1
1 4 3 2 5
4 5 1 2 3
3


 
// probati bojenje sahovski
*/
 
 
 
 
 
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14684 KB Output is correct
11 Correct 2 ms 14816 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 1 ms 14808 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14684 KB Output is correct
11 Correct 2 ms 14816 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 1 ms 14808 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19192 KB Output is correct
17 Correct 6 ms 19036 KB Output is correct
18 Correct 2 ms 10844 KB Output is correct
19 Correct 6 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16988 KB Output is correct
23 Correct 8 ms 19176 KB Output is correct
24 Correct 5 ms 19152 KB Output is correct
25 Correct 6 ms 16956 KB Output is correct
26 Correct 7 ms 16988 KB Output is correct
27 Correct 7 ms 19036 KB Output is correct
28 Correct 5 ms 16988 KB Output is correct
29 Correct 4 ms 16984 KB Output is correct
30 Correct 3 ms 17040 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14684 KB Output is correct
11 Correct 2 ms 14816 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 1 ms 14808 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19192 KB Output is correct
17 Correct 6 ms 19036 KB Output is correct
18 Correct 2 ms 10844 KB Output is correct
19 Correct 6 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16988 KB Output is correct
23 Correct 8 ms 19176 KB Output is correct
24 Correct 5 ms 19152 KB Output is correct
25 Correct 6 ms 16956 KB Output is correct
26 Correct 7 ms 16988 KB Output is correct
27 Correct 7 ms 19036 KB Output is correct
28 Correct 5 ms 16988 KB Output is correct
29 Correct 4 ms 16984 KB Output is correct
30 Correct 3 ms 17040 KB Output is correct
31 Correct 151 ms 51672 KB Output is correct
32 Correct 144 ms 51396 KB Output is correct
33 Correct 13 ms 15244 KB Output is correct
34 Correct 97 ms 45956 KB Output is correct
35 Correct 225 ms 52592 KB Output is correct
36 Correct 83 ms 50736 KB Output is correct
37 Correct 44 ms 38056 KB Output is correct
38 Correct 214 ms 50516 KB Output is correct
39 Correct 114 ms 52224 KB Output is correct
40 Correct 122 ms 45716 KB Output is correct
41 Correct 148 ms 50404 KB Output is correct
42 Correct 202 ms 50392 KB Output is correct
43 Correct 103 ms 45652 KB Output is correct
44 Correct 81 ms 45808 KB Output is correct
45 Correct 44 ms 41184 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14684 KB Output is correct
11 Correct 2 ms 14816 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 1 ms 14808 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Incorrect 2 ms 14684 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14684 KB Output is correct
11 Correct 2 ms 14816 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 1 ms 14808 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19192 KB Output is correct
17 Correct 6 ms 19036 KB Output is correct
18 Correct 2 ms 10844 KB Output is correct
19 Correct 6 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16988 KB Output is correct
23 Correct 8 ms 19176 KB Output is correct
24 Correct 5 ms 19152 KB Output is correct
25 Correct 6 ms 16956 KB Output is correct
26 Correct 7 ms 16988 KB Output is correct
27 Correct 7 ms 19036 KB Output is correct
28 Correct 5 ms 16988 KB Output is correct
29 Correct 4 ms 16984 KB Output is correct
30 Correct 3 ms 17040 KB Output is correct
31 Incorrect 2 ms 14684 KB Output isn't correct
32 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 14680 KB Output is correct
2 Correct 2 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14684 KB Output is correct
11 Correct 2 ms 14816 KB Output is correct
12 Correct 2 ms 14684 KB Output is correct
13 Correct 2 ms 14684 KB Output is correct
14 Correct 1 ms 14808 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 6 ms 19192 KB Output is correct
17 Correct 6 ms 19036 KB Output is correct
18 Correct 2 ms 10844 KB Output is correct
19 Correct 6 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16988 KB Output is correct
23 Correct 8 ms 19176 KB Output is correct
24 Correct 5 ms 19152 KB Output is correct
25 Correct 6 ms 16956 KB Output is correct
26 Correct 7 ms 16988 KB Output is correct
27 Correct 7 ms 19036 KB Output is correct
28 Correct 5 ms 16988 KB Output is correct
29 Correct 4 ms 16984 KB Output is correct
30 Correct 3 ms 17040 KB Output is correct
31 Correct 151 ms 51672 KB Output is correct
32 Correct 144 ms 51396 KB Output is correct
33 Correct 13 ms 15244 KB Output is correct
34 Correct 97 ms 45956 KB Output is correct
35 Correct 225 ms 52592 KB Output is correct
36 Correct 83 ms 50736 KB Output is correct
37 Correct 44 ms 38056 KB Output is correct
38 Correct 214 ms 50516 KB Output is correct
39 Correct 114 ms 52224 KB Output is correct
40 Correct 122 ms 45716 KB Output is correct
41 Correct 148 ms 50404 KB Output is correct
42 Correct 202 ms 50392 KB Output is correct
43 Correct 103 ms 45652 KB Output is correct
44 Correct 81 ms 45808 KB Output is correct
45 Correct 44 ms 41184 KB Output is correct
46 Incorrect 2 ms 14684 KB Output isn't correct
47 Halted 0 ms 0 KB -