Submission #1017896

# Submission time Handle Problem Language Result Execution time Memory
1017896 2024-07-09T11:12:44 Z stefanopulos Sličnost (COI23_slicnost) C++17
50 / 100
233 ms 48492 KB
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bits/stdc++.h>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ldb;
 
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ldb,ldb> pdd;
 
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define fb(i,b,a) for(int i = b; i >= a; i--)
#define trav(a,x) for(auto& a : x)
 
#define sz(a) (int)(a).size()
#define fi first
#define se second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
// os.order_of_key(k) the number of elements in the os less than k
// *os.find_by_order(k)  print the k-th smallest number in os(0-based)
 
const int mod = 1000000007;
const int inf = 1e9 + 5;
const int mxN = 100005; 
 
int n, k, q;
int A[mxN];
int B[mxN];
 
int poz[mxN];
 
int L[mxN];
int R[mxN];
 
int idx = 0;
int ls[200 * mxN], rs[200 * mxN], root[200 * mxN];
int mx[200 * mxN], sum[200 * mxN], cnt[200 * mxN];
void build(int& v, int tl, int tr){
    v = ++idx;
    if(tl == tr){
        mx[v] = sum[v] = 0;
        cnt[v] = 1;
        return;
    }
    int mid = (tl + tr) / 2;
    build(ls[v], tl, mid); build(rs[v], mid + 1, tr);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);
}

void update(int& v, int rv, int tl, int tr, int pos, int val){
    v = ++idx; ls[v] = ls[rv]; rs[v] = rs[rv]; mx[v] = mx[rv]; sum[v] = sum[rv]; cnt[v] = cnt[rv];
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], ls[rv], tl, mid, pos, val);
    else update(rs[v], rs[rv], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

void update(int v, int tl, int tr, int pos, int val){
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], tl, mid, pos, val);
    else update(rs[v], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

struct SegTree{
    ll bor[4 * mxN][2];
    void update(int v, int tl, int tr, int pos, int val, ll cnt){
        if(tl == tr){
            bor[v][0] = val;
            bor[v][1] = cnt;
            return;
        }
        int mid = (tl + tr) / 2;
        if(pos <= mid)update(v * 2, tl, mid, pos, val, cnt);
        else update(v * 2 + 1, mid + 1, tr, pos, val, cnt);
        bor[v][0] = max(bor[v * 2][0], bor[v * 2 + 1][0]);
        bor[v][1] = (bor[v][0] == bor[v * 2][0] ? bor[v * 2][1] : 0) + (bor[v][0] == bor[v * 2 + 1][0] ? bor[v * 2 + 1][1] : 0);
    }
}drvo;

void calc(){

    idx = 0;
    build(root[k],1,n - k + 1);
    ff(i,1,k){
        int l = L[poz[A[i]]];
        int r = R[poz[A[i]]];
        update(root[k],root[k],1,n - k + 1,l,1);
        if(r < n - k + 1)update(root[k],1,n - k + 1,r + 1,-1);
    }
    
    drvo.update(1,1,n - k + 1,1,mx[root[k]],cnt[root[k]]);
    ff(i,k + 1,n){
        int l1 = L[poz[A[i - k]]];
        int r1 = R[poz[A[i - k]]];
        update(root[i],root[i - 1],1,n - k + 1,l1,-1);
        if(r1 < n - k + 1)update(root[i],1,n - k + 1,r1 + 1,1);
 
        int l2 = L[poz[A[i]]];
        int r2 = R[poz[A[i]]];
        update(root[i],1,n - k + 1,l2,1);
        if(r2 < n - k + 1)update(root[i],1,n - k + 1,r2 + 1,-1);

        drvo.update(1,1,n - k + 1,i - k + 1,mx[root[i]],cnt[root[i]]);

    }
 
}
 
int main(){
    cin.tie(0)->sync_with_stdio(0);
 
    cin >> n >> k >> q;
    ff(i,1,n)cin >> A[i];
    ff(i,1,n)cin >> B[i], poz[B[i]] = i;
 
    ff(i,1,n){
        L[i] = max(1, i - k + 1);
        R[i] = min(i, n - k + 1);
    }
 
    calc();
 
    int najv = drvo.bor[1][0]; ll br = drvo.bor[1][1];
    cout << najv << " " << br << '\n';
    while(q--){
        int t;
        cin >> t;

        if(t - k + 1 >= 1){
            int x = t;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t]]];
            int r1 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t + 1]]];
            int r2 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }
 
        if(t + k <= n){
            int x = t + k;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t + 1]]];
            int r1 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t]]];
            int r2 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }

        swap(A[t], A[t + 1]);

        najv = drvo.bor[1][0]; br = drvo.bor[1][1];
        cout << najv << " " << br << '\n';
 
    }
 
    return 0;
}
/*
 
4 3 0
2 4 1 3
1 2 3 4


5 3 1
1 4 3 2 5
4 5 1 2 3
3


 
// probati bojenje sahovski
*/
 
 
 
 
 
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14680 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14680 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 4 ms 2308 KB Output is correct
17 Correct 5 ms 2140 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 4 ms 1848 KB Output is correct
20 Correct 6 ms 2396 KB Output is correct
21 Correct 4 ms 2392 KB Output is correct
22 Correct 2 ms 1368 KB Output is correct
23 Correct 6 ms 2140 KB Output is correct
24 Correct 5 ms 2140 KB Output is correct
25 Correct 4 ms 2136 KB Output is correct
26 Correct 6 ms 2140 KB Output is correct
27 Correct 6 ms 2140 KB Output is correct
28 Correct 4 ms 1880 KB Output is correct
29 Correct 5 ms 1884 KB Output is correct
30 Correct 2 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14680 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 4 ms 2308 KB Output is correct
17 Correct 5 ms 2140 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 4 ms 1848 KB Output is correct
20 Correct 6 ms 2396 KB Output is correct
21 Correct 4 ms 2392 KB Output is correct
22 Correct 2 ms 1368 KB Output is correct
23 Correct 6 ms 2140 KB Output is correct
24 Correct 5 ms 2140 KB Output is correct
25 Correct 4 ms 2136 KB Output is correct
26 Correct 6 ms 2140 KB Output is correct
27 Correct 6 ms 2140 KB Output is correct
28 Correct 4 ms 1880 KB Output is correct
29 Correct 5 ms 1884 KB Output is correct
30 Correct 2 ms 1628 KB Output is correct
31 Correct 131 ms 44356 KB Output is correct
32 Correct 147 ms 44216 KB Output is correct
33 Correct 23 ms 4184 KB Output is correct
34 Correct 113 ms 38780 KB Output is correct
35 Correct 233 ms 45392 KB Output is correct
36 Correct 84 ms 48492 KB Output is correct
37 Correct 42 ms 39252 KB Output is correct
38 Correct 217 ms 43276 KB Output is correct
39 Correct 109 ms 45136 KB Output is correct
40 Correct 141 ms 38480 KB Output is correct
41 Correct 137 ms 43092 KB Output is correct
42 Correct 193 ms 43264 KB Output is correct
43 Correct 107 ms 38336 KB Output is correct
44 Correct 92 ms 38480 KB Output is correct
45 Correct 49 ms 29520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14680 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Incorrect 1 ms 348 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14680 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 4 ms 2308 KB Output is correct
17 Correct 5 ms 2140 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 4 ms 1848 KB Output is correct
20 Correct 6 ms 2396 KB Output is correct
21 Correct 4 ms 2392 KB Output is correct
22 Correct 2 ms 1368 KB Output is correct
23 Correct 6 ms 2140 KB Output is correct
24 Correct 5 ms 2140 KB Output is correct
25 Correct 4 ms 2136 KB Output is correct
26 Correct 6 ms 2140 KB Output is correct
27 Correct 6 ms 2140 KB Output is correct
28 Correct 4 ms 1880 KB Output is correct
29 Correct 5 ms 1884 KB Output is correct
30 Correct 2 ms 1628 KB Output is correct
31 Incorrect 1 ms 348 KB Output isn't correct
32 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14680 KB Output is correct
2 Correct 2 ms 14680 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 2 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14684 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 2 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 2 ms 14680 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 4 ms 2308 KB Output is correct
17 Correct 5 ms 2140 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 4 ms 1848 KB Output is correct
20 Correct 6 ms 2396 KB Output is correct
21 Correct 4 ms 2392 KB Output is correct
22 Correct 2 ms 1368 KB Output is correct
23 Correct 6 ms 2140 KB Output is correct
24 Correct 5 ms 2140 KB Output is correct
25 Correct 4 ms 2136 KB Output is correct
26 Correct 6 ms 2140 KB Output is correct
27 Correct 6 ms 2140 KB Output is correct
28 Correct 4 ms 1880 KB Output is correct
29 Correct 5 ms 1884 KB Output is correct
30 Correct 2 ms 1628 KB Output is correct
31 Correct 131 ms 44356 KB Output is correct
32 Correct 147 ms 44216 KB Output is correct
33 Correct 23 ms 4184 KB Output is correct
34 Correct 113 ms 38780 KB Output is correct
35 Correct 233 ms 45392 KB Output is correct
36 Correct 84 ms 48492 KB Output is correct
37 Correct 42 ms 39252 KB Output is correct
38 Correct 217 ms 43276 KB Output is correct
39 Correct 109 ms 45136 KB Output is correct
40 Correct 141 ms 38480 KB Output is correct
41 Correct 137 ms 43092 KB Output is correct
42 Correct 193 ms 43264 KB Output is correct
43 Correct 107 ms 38336 KB Output is correct
44 Correct 92 ms 38480 KB Output is correct
45 Correct 49 ms 29520 KB Output is correct
46 Incorrect 1 ms 348 KB Output isn't correct
47 Halted 0 ms 0 KB -