Submission #1017894

# Submission time Handle Problem Language Result Execution time Memory
1017894 2024-07-09T11:12:01 Z stefanopulos Sličnost (COI23_slicnost) C++17
50 / 100
209 ms 51400 KB
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bits/stdc++.h>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ldb;
 
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ldb,ldb> pdd;
 
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define fb(i,b,a) for(int i = b; i >= a; i--)
#define trav(a,x) for(auto& a : x)
 
#define sz(a) (int)(a).size()
#define fi first
#define se second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
// os.order_of_key(k) the number of elements in the os less than k
// *os.find_by_order(k)  print the k-th smallest number in os(0-based)
 
const int mod = 1000000007;
const int inf = 1e9 + 5;
const int mxN = 100005; 
 
int n, k, q;
int A[mxN];
int B[mxN];
 
int poz[mxN];
 
int L[mxN];
int R[mxN];
 
int idx = 0;
int ls[100 * mxN], rs[100 * mxN], root[100 * mxN];
int mx[100 * mxN], sum[100 * mxN], cnt[100 * mxN];
void build(int& v, int tl, int tr){
    v = ++idx;
    if(tl == tr){
        mx[v] = sum[v] = 0;
        cnt[v] = 1;
        return;
    }
    int mid = (tl + tr) / 2;
    build(ls[v], tl, mid); build(rs[v], mid + 1, tr);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);
}

void update(int& v, int rv, int tl, int tr, int pos, int val){
    v = ++idx; ls[v] = ls[rv]; rs[v] = rs[rv]; mx[v] = mx[rv]; sum[v] = sum[rv]; cnt[v] = cnt[rv];
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], ls[rv], tl, mid, pos, val);
    else update(rs[v], rs[rv], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

void update(int v, int tl, int tr, int pos, int val){
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], tl, mid, pos, val);
    else update(rs[v], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

struct SegTree{
    ll bor[4 * mxN][2];
    void update(int v, int tl, int tr, int pos, int val, ll cnt){
        if(tl == tr){
            bor[v][0] = val;
            bor[v][1] = cnt;
            return;
        }
        int mid = (tl + tr) / 2;
        if(pos <= mid)update(v * 2, tl, mid, pos, val, cnt);
        else update(v * 2 + 1, mid + 1, tr, pos, val, cnt);
        bor[v][0] = max(bor[v * 2][0], bor[v * 2 + 1][0]);
        bor[v][1] = (bor[v][0] == bor[v * 2][0] ? bor[v * 2][1] : 0) + (bor[v][0] == bor[v * 2 + 1][0] ? bor[v * 2 + 1][1] : 0);
    }
}drvo;

void calc(){

    idx = 0;
    build(root[k],1,n - k + 1);
    ff(i,1,k){
        int l = L[poz[A[i]]];
        int r = R[poz[A[i]]];
        update(root[k],root[k],1,n - k + 1,l,1);
        if(r < n - k + 1)update(root[k],1,n - k + 1,r + 1,-1);
    }
    
    drvo.update(1,1,n - k + 1,1,mx[root[k]],cnt[root[k]]);
    ff(i,k + 1,n){
        int l1 = L[poz[A[i - k]]];
        int r1 = R[poz[A[i - k]]];
        update(root[i],root[i - 1],1,n - k + 1,l1,-1);
        if(r1 < n - k + 1)update(root[i],1,n - k + 1,r1 + 1,1);
 
        int l2 = L[poz[A[i]]];
        int r2 = R[poz[A[i]]];
        update(root[i],1,n - k + 1,l2,1);
        if(r2 < n - k + 1)update(root[i],1,n - k + 1,r2 + 1,-1);

        drvo.update(1,1,n - k + 1,i - k + 1,mx[root[i]],cnt[root[i]]);

    }
 
}
 
int main(){
    cin.tie(0)->sync_with_stdio(0);
 
    cin >> n >> k >> q;
    ff(i,1,n)cin >> A[i];
    ff(i,1,n)cin >> B[i], poz[B[i]] = i;
 
    ff(i,1,n){
        L[i] = max(1, i - k + 1);
        R[i] = min(i, n - k + 1);
    }
 
    calc();
 
    int najv = drvo.bor[1][0]; ll br = drvo.bor[1][1];
    cout << najv << " " << br << '\n';
    while(q--){
        int t;
        cin >> t;

        if(t - k + 1 >= 1){
            int x = t;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t]]];
            int r1 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t + 1]]];
            int r2 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }
 
        if(t + k <= n){
            int x = t + k;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t + 1]]];
            int r1 = R[poz[A[t + 1]]];
            update(root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t]]];
            int r2 = R[poz[A[t]]];
            update(root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],1,n - k + 1,r2 + 1,-1);

            drvo.update(1,1,n - k + 1,x - k + 1,mx[root[x]],cnt[root[x]]);

        }

        swap(A[t], A[t + 1]);

        najv = drvo.bor[1][0]; br = drvo.bor[1][1];
        cout << najv << " " << br << '\n';
 
    }
 
    return 0;
}
/*
 
4 3 0
2 4 1 3
1 2 3 4


5 3 1
1 4 3 2 5
4 5 1 2 3
3


 
// probati bojenje sahovski
*/
 
 
 
 
 
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14684 KB Output is correct
2 Correct 1 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14680 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 1 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 1 ms 14684 KB Output is correct
13 Correct 1 ms 14684 KB Output is correct
14 Correct 1 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14684 KB Output is correct
2 Correct 1 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14680 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 1 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 1 ms 14684 KB Output is correct
13 Correct 1 ms 14684 KB Output is correct
14 Correct 1 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 5 ms 19032 KB Output is correct
17 Correct 6 ms 19072 KB Output is correct
18 Correct 2 ms 10588 KB Output is correct
19 Correct 5 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16988 KB Output is correct
26 Correct 7 ms 16908 KB Output is correct
27 Correct 6 ms 18952 KB Output is correct
28 Correct 4 ms 16988 KB Output is correct
29 Correct 4 ms 16888 KB Output is correct
30 Correct 3 ms 16732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14684 KB Output is correct
2 Correct 1 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14680 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 1 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 1 ms 14684 KB Output is correct
13 Correct 1 ms 14684 KB Output is correct
14 Correct 1 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 5 ms 19032 KB Output is correct
17 Correct 6 ms 19072 KB Output is correct
18 Correct 2 ms 10588 KB Output is correct
19 Correct 5 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16988 KB Output is correct
26 Correct 7 ms 16908 KB Output is correct
27 Correct 6 ms 18952 KB Output is correct
28 Correct 4 ms 16988 KB Output is correct
29 Correct 4 ms 16888 KB Output is correct
30 Correct 3 ms 16732 KB Output is correct
31 Correct 128 ms 50688 KB Output is correct
32 Correct 129 ms 50236 KB Output is correct
33 Correct 22 ms 14168 KB Output is correct
34 Correct 91 ms 44884 KB Output is correct
35 Correct 209 ms 51400 KB Output is correct
36 Correct 79 ms 49720 KB Output is correct
37 Correct 39 ms 37460 KB Output is correct
38 Correct 182 ms 49724 KB Output is correct
39 Correct 99 ms 51284 KB Output is correct
40 Correct 106 ms 44760 KB Output is correct
41 Correct 116 ms 49364 KB Output is correct
42 Correct 201 ms 49400 KB Output is correct
43 Correct 93 ms 44748 KB Output is correct
44 Correct 75 ms 44628 KB Output is correct
45 Correct 45 ms 37460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14684 KB Output is correct
2 Correct 1 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14680 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 1 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 1 ms 14684 KB Output is correct
13 Correct 1 ms 14684 KB Output is correct
14 Correct 1 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Incorrect 2 ms 14684 KB Output isn't correct
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14684 KB Output is correct
2 Correct 1 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14680 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 1 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 1 ms 14684 KB Output is correct
13 Correct 1 ms 14684 KB Output is correct
14 Correct 1 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 5 ms 19032 KB Output is correct
17 Correct 6 ms 19072 KB Output is correct
18 Correct 2 ms 10588 KB Output is correct
19 Correct 5 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16988 KB Output is correct
26 Correct 7 ms 16908 KB Output is correct
27 Correct 6 ms 18952 KB Output is correct
28 Correct 4 ms 16988 KB Output is correct
29 Correct 4 ms 16888 KB Output is correct
30 Correct 3 ms 16732 KB Output is correct
31 Incorrect 2 ms 14684 KB Output isn't correct
32 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 14684 KB Output is correct
2 Correct 1 ms 14684 KB Output is correct
3 Correct 1 ms 10588 KB Output is correct
4 Correct 1 ms 14684 KB Output is correct
5 Correct 2 ms 14684 KB Output is correct
6 Correct 2 ms 14680 KB Output is correct
7 Correct 2 ms 14684 KB Output is correct
8 Correct 1 ms 14684 KB Output is correct
9 Correct 2 ms 14684 KB Output is correct
10 Correct 1 ms 14684 KB Output is correct
11 Correct 1 ms 14684 KB Output is correct
12 Correct 1 ms 14684 KB Output is correct
13 Correct 1 ms 14684 KB Output is correct
14 Correct 1 ms 14684 KB Output is correct
15 Correct 2 ms 14684 KB Output is correct
16 Correct 5 ms 19032 KB Output is correct
17 Correct 6 ms 19072 KB Output is correct
18 Correct 2 ms 10588 KB Output is correct
19 Correct 5 ms 16988 KB Output is correct
20 Correct 7 ms 19036 KB Output is correct
21 Correct 5 ms 19036 KB Output is correct
22 Correct 3 ms 16732 KB Output is correct
23 Correct 7 ms 19036 KB Output is correct
24 Correct 5 ms 19036 KB Output is correct
25 Correct 5 ms 16988 KB Output is correct
26 Correct 7 ms 16908 KB Output is correct
27 Correct 6 ms 18952 KB Output is correct
28 Correct 4 ms 16988 KB Output is correct
29 Correct 4 ms 16888 KB Output is correct
30 Correct 3 ms 16732 KB Output is correct
31 Correct 128 ms 50688 KB Output is correct
32 Correct 129 ms 50236 KB Output is correct
33 Correct 22 ms 14168 KB Output is correct
34 Correct 91 ms 44884 KB Output is correct
35 Correct 209 ms 51400 KB Output is correct
36 Correct 79 ms 49720 KB Output is correct
37 Correct 39 ms 37460 KB Output is correct
38 Correct 182 ms 49724 KB Output is correct
39 Correct 99 ms 51284 KB Output is correct
40 Correct 106 ms 44760 KB Output is correct
41 Correct 116 ms 49364 KB Output is correct
42 Correct 201 ms 49400 KB Output is correct
43 Correct 93 ms 44748 KB Output is correct
44 Correct 75 ms 44628 KB Output is correct
45 Correct 45 ms 37460 KB Output is correct
46 Incorrect 2 ms 14684 KB Output isn't correct
47 Halted 0 ms 0 KB -