Submission #1017831

# Submission time Handle Problem Language Result Execution time Memory
1017831 2024-07-09T10:33:28 Z stefanopulos Sličnost (COI23_slicnost) C++17
50 / 100
309 ms 150016 KB
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bits/stdc++.h>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ldb;
 
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<ldb,ldb> pdd;
 
#define ff(i,a,b) for(int i = a; i <= b; i++)
#define fb(i,b,a) for(int i = b; i >= a; i--)
#define trav(a,x) for(auto& a : x)
 
#define sz(a) (int)(a).size()
#define fi first
#define se second
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
 
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
 
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
// os.order_of_key(k) the number of elements in the os less than k
// *os.find_by_order(k)  print the k-th smallest number in os(0-based)
 
const int mod = 1000000007;
const int inf = 1e9 + 5;
const int mxN = 100005; 
 
int n, k, q;
int A[mxN];
int B[mxN];
 
int poz[mxN];
 
int L[mxN];
int R[mxN];
 
int idx = 0;
int ls[100 * mxN], rs[100 * mxN], root[100 * mxN];
int mx[100 * mxN], sum[100 * mxN], cnt[100 * mxN];
void build(int& v, int tl, int tr){
    v = ++idx;
    if(tl == tr){
        mx[v] = sum[v] = 0;
        cnt[v] = 1;
        return;
    }
    int mid = (tl + tr) / 2;
    build(ls[v], tl, mid); build(rs[v], mid + 1, tr);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);
}

void update(int& v, int rv, int tl, int tr, int pos, int val){
    v = ++idx; ls[v] = ls[rv]; rs[v] = rs[rv]; mx[v] = mx[rv]; sum[v] = sum[rv]; cnt[v] = cnt[rv];
    if(tl == tr){
        mx[v] += val;
        sum[v] += val;
        return;
    }
    int mid = (tl + tr) / 2;
    if(pos <= mid)update(ls[v], ls[rv], tl, mid, pos, val);
    else update(rs[v], rs[rv], mid + 1, tr, pos, val);

    sum[v] = sum[ls[v]] + sum[rs[v]];
    mx[v] = max(mx[ls[v]], mx[rs[v]] + sum[ls[v]]);
    cnt[v] = (mx[v] == mx[ls[v]] ? cnt[ls[v]] : 0) + (mx[v] == mx[rs[v]] + sum[ls[v]] ? cnt[rs[v]] : 0);

}

ll br = 0;
int najv = 0;
void calc(){

    idx = 0;
    build(root[k],1,n - k + 1);
    ff(i,1,k){
        int l = L[poz[A[i]]];
        int r = R[poz[A[i]]];
        update(root[k],root[k],1,n - k + 1,l,1);
        if(r < n - k + 1)update(root[k],root[k],1,n - k + 1,r + 1,-1);
    }
    
    najv = mx[root[k]]; br = cnt[root[k]];
    ff(i,k + 1,n){
        int l1 = L[poz[A[i - k]]];
        int r1 = R[poz[A[i - k]]];
        update(root[i],root[i - 1],1,n - k + 1,l1,-1);
        if(r1 < n - k + 1)update(root[i],root[i],1,n - k + 1,r1 + 1,1);
 
        int l2 = L[poz[A[i]]];
        int r2 = R[poz[A[i]]];
        update(root[i],root[i],1,n - k + 1,l2,1);
        if(r2 < n - k + 1)update(root[i],root[i],1,n - k + 1,r2 + 1,-1);

        if(mx[root[i]] > najv){
            najv = mx[root[i]];
            br = cnt[root[i]];
        }
        else if(mx[root[i]] == najv)br += cnt[root[i]];
    }
 
    cout << najv << " " << br << '\n';
 
}
 
int main(){
    cin.tie(0)->sync_with_stdio(0);
 
    cin >> n >> k >> q;
    ff(i,1,n)cin >> A[i];
    ff(i,1,n)cin >> B[i], poz[B[i]] = i;
 
    ff(i,1,n){
        L[i] = max(1, i - k + 1);
        R[i] = min(i, n - k + 1);
    }
 
    calc();
 
    while(q--){
        int t;
        cin >> t;

        if(t - k + 1 >= 1){
            int x = t;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t]]];
            int r1 = R[poz[A[t]]];
            update(root[x],root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t + 1]]];
            int r2 = R[poz[A[t + 1]]];
            update(root[x],root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],root[x],1,n - k + 1,r2 + 1,-1);

            if(mx[root[x]] > najv){
                najv = mx[root[x]];
                br = cnt[root[x]];
            }
            else if(mx[root[x]] == najv)br += cnt[root[x]];

        }
 
        if(t + k <= n){
            int x = t + k;
            if(mx[root[x]] == najv)br -= cnt[root[x]];

            int l1 = L[poz[A[t + 1]]];
            int r1 = R[poz[A[t + 1]]];
            update(root[x],root[x],1,n - k + 1,l1,-1);
            if(r1 < n - k + 1)update(root[x],root[x],1,n - k + 1,r1 + 1,1);

            int l2 = L[poz[A[t]]];
            int r2 = R[poz[A[t]]];
            update(root[x],root[x],1,n - k + 1,l2,1);
            if(r2 < n - k + 1)update(root[x],root[x],1,n - k + 1,r2 + 1,-1);

            if(mx[root[x]] > najv){
                najv = mx[root[x]];
                br = cnt[root[x]];
            }
            else if(mx[root[x]] == najv)br += cnt[root[x]];

        }

        swap(A[t], A[t + 1]);
        cout << najv << " " << br << '\n';
 
    }
 
    return 0;
}
/*
 
4 3 0
2 4 1 3
1 2 3 4


5 3 1
1 4 3 2 5
4 5 1 2 3
3


 
// probati bojenje sahovski
*/
 
 
 
 
 
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 1 ms 8536 KB Output is correct
4 Correct 1 ms 12636 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10716 KB Output is correct
7 Correct 1 ms 12636 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 1 ms 10588 KB Output is correct
10 Correct 1 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 10588 KB Output is correct
13 Correct 2 ms 12776 KB Output is correct
14 Correct 1 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 1 ms 8536 KB Output is correct
4 Correct 1 ms 12636 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10716 KB Output is correct
7 Correct 1 ms 12636 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 1 ms 10588 KB Output is correct
10 Correct 1 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 10588 KB Output is correct
13 Correct 2 ms 12776 KB Output is correct
14 Correct 1 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 8 ms 14684 KB Output is correct
17 Correct 8 ms 14684 KB Output is correct
18 Correct 2 ms 8540 KB Output is correct
19 Correct 6 ms 12380 KB Output is correct
20 Correct 9 ms 14684 KB Output is correct
21 Correct 7 ms 13560 KB Output is correct
22 Correct 3 ms 11236 KB Output is correct
23 Correct 9 ms 14672 KB Output is correct
24 Correct 8 ms 14684 KB Output is correct
25 Correct 6 ms 13916 KB Output is correct
26 Correct 7 ms 12844 KB Output is correct
27 Correct 9 ms 14456 KB Output is correct
28 Correct 6 ms 12380 KB Output is correct
29 Correct 5 ms 12124 KB Output is correct
30 Correct 3 ms 11356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 1 ms 8536 KB Output is correct
4 Correct 1 ms 12636 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10716 KB Output is correct
7 Correct 1 ms 12636 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 1 ms 10588 KB Output is correct
10 Correct 1 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 10588 KB Output is correct
13 Correct 2 ms 12776 KB Output is correct
14 Correct 1 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 8 ms 14684 KB Output is correct
17 Correct 8 ms 14684 KB Output is correct
18 Correct 2 ms 8540 KB Output is correct
19 Correct 6 ms 12380 KB Output is correct
20 Correct 9 ms 14684 KB Output is correct
21 Correct 7 ms 13560 KB Output is correct
22 Correct 3 ms 11236 KB Output is correct
23 Correct 9 ms 14672 KB Output is correct
24 Correct 8 ms 14684 KB Output is correct
25 Correct 6 ms 13916 KB Output is correct
26 Correct 7 ms 12844 KB Output is correct
27 Correct 9 ms 14456 KB Output is correct
28 Correct 6 ms 12380 KB Output is correct
29 Correct 5 ms 12124 KB Output is correct
30 Correct 3 ms 11356 KB Output is correct
31 Correct 278 ms 146824 KB Output is correct
32 Correct 263 ms 145688 KB Output is correct
33 Correct 13 ms 12376 KB Output is correct
34 Correct 153 ms 81844 KB Output is correct
35 Correct 309 ms 150016 KB Output is correct
36 Correct 193 ms 138068 KB Output is correct
37 Correct 48 ms 38392 KB Output is correct
38 Correct 303 ms 143268 KB Output is correct
39 Correct 209 ms 148492 KB Output is correct
40 Correct 183 ms 94804 KB Output is correct
41 Correct 219 ms 107716 KB Output is correct
42 Correct 285 ms 134132 KB Output is correct
43 Correct 171 ms 86096 KB Output is correct
44 Correct 118 ms 72220 KB Output is correct
45 Correct 52 ms 39216 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 1 ms 8536 KB Output is correct
4 Correct 1 ms 12636 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10716 KB Output is correct
7 Correct 1 ms 12636 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 1 ms 10588 KB Output is correct
10 Correct 1 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 10588 KB Output is correct
13 Correct 2 ms 12776 KB Output is correct
14 Correct 1 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 2 ms 10588 KB Output is correct
17 Incorrect 2 ms 12636 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 1 ms 8536 KB Output is correct
4 Correct 1 ms 12636 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10716 KB Output is correct
7 Correct 1 ms 12636 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 1 ms 10588 KB Output is correct
10 Correct 1 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 10588 KB Output is correct
13 Correct 2 ms 12776 KB Output is correct
14 Correct 1 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 8 ms 14684 KB Output is correct
17 Correct 8 ms 14684 KB Output is correct
18 Correct 2 ms 8540 KB Output is correct
19 Correct 6 ms 12380 KB Output is correct
20 Correct 9 ms 14684 KB Output is correct
21 Correct 7 ms 13560 KB Output is correct
22 Correct 3 ms 11236 KB Output is correct
23 Correct 9 ms 14672 KB Output is correct
24 Correct 8 ms 14684 KB Output is correct
25 Correct 6 ms 13916 KB Output is correct
26 Correct 7 ms 12844 KB Output is correct
27 Correct 9 ms 14456 KB Output is correct
28 Correct 6 ms 12380 KB Output is correct
29 Correct 5 ms 12124 KB Output is correct
30 Correct 3 ms 11356 KB Output is correct
31 Correct 2 ms 10588 KB Output is correct
32 Incorrect 2 ms 12636 KB Output isn't correct
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 10588 KB Output is correct
2 Correct 1 ms 10588 KB Output is correct
3 Correct 1 ms 8536 KB Output is correct
4 Correct 1 ms 12636 KB Output is correct
5 Correct 1 ms 10588 KB Output is correct
6 Correct 1 ms 10716 KB Output is correct
7 Correct 1 ms 12636 KB Output is correct
8 Correct 1 ms 10588 KB Output is correct
9 Correct 1 ms 10588 KB Output is correct
10 Correct 1 ms 12636 KB Output is correct
11 Correct 1 ms 10588 KB Output is correct
12 Correct 1 ms 10588 KB Output is correct
13 Correct 2 ms 12776 KB Output is correct
14 Correct 1 ms 10588 KB Output is correct
15 Correct 2 ms 10588 KB Output is correct
16 Correct 8 ms 14684 KB Output is correct
17 Correct 8 ms 14684 KB Output is correct
18 Correct 2 ms 8540 KB Output is correct
19 Correct 6 ms 12380 KB Output is correct
20 Correct 9 ms 14684 KB Output is correct
21 Correct 7 ms 13560 KB Output is correct
22 Correct 3 ms 11236 KB Output is correct
23 Correct 9 ms 14672 KB Output is correct
24 Correct 8 ms 14684 KB Output is correct
25 Correct 6 ms 13916 KB Output is correct
26 Correct 7 ms 12844 KB Output is correct
27 Correct 9 ms 14456 KB Output is correct
28 Correct 6 ms 12380 KB Output is correct
29 Correct 5 ms 12124 KB Output is correct
30 Correct 3 ms 11356 KB Output is correct
31 Correct 278 ms 146824 KB Output is correct
32 Correct 263 ms 145688 KB Output is correct
33 Correct 13 ms 12376 KB Output is correct
34 Correct 153 ms 81844 KB Output is correct
35 Correct 309 ms 150016 KB Output is correct
36 Correct 193 ms 138068 KB Output is correct
37 Correct 48 ms 38392 KB Output is correct
38 Correct 303 ms 143268 KB Output is correct
39 Correct 209 ms 148492 KB Output is correct
40 Correct 183 ms 94804 KB Output is correct
41 Correct 219 ms 107716 KB Output is correct
42 Correct 285 ms 134132 KB Output is correct
43 Correct 171 ms 86096 KB Output is correct
44 Correct 118 ms 72220 KB Output is correct
45 Correct 52 ms 39216 KB Output is correct
46 Correct 2 ms 10588 KB Output is correct
47 Incorrect 2 ms 12636 KB Output isn't correct
48 Halted 0 ms 0 KB -