Submission #101771

# Submission time Handle Problem Language Result Execution time Memory
101771 2019-03-20T01:47:31 Z Benq Grad (COI14_grad) C++14
100 / 100
808 ms 94856 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define F0R(i, a) for (int i = 0; i < (a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)

#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound

#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize

const int MOD = 1000000007; // 998244353
const ll INF = 1e18;
const int MX = 200005;
const ld PI = 4*atan((ld)1);

template<class T> void ckmin(T &a, T b) { a = min(a, b); }
template<class T> void ckmax(T &a, T b) { a = max(a, b); }

template<class A, class B> A operator+=(A& l, const B& r) { return l = l+r; }
template<class A, class B> A operator-=(A& l, const B& r) { return l = l-r; }
template<class A, class B> A operator*=(A& l, const B& r) { return l = l*r; }
template<class A, class B> A operator/=(A& l, const B& r) { return l = l/r; }

namespace input {
    template<class T> void re(complex<T>& x);
    template<class T1, class T2> void re(pair<T1,T2>& p);
    template<class T> void re(vector<T>& a);
    template<class T, size_t SZ> void re(array<T,SZ>& a);

    template<class T> void re(T& x) { cin >> x; }
    void re(double& x) { string t; re(t); x = stod(t); }
    void re(ld& x) { string t; re(t); x = stold(t); }
    template<class Arg, class... Args> void re(Arg& first, Args&... rest) { 
        re(first); re(rest...); 
    }

    template<class T> void re(complex<T>& x) { T a,b; re(a,b); x = cd(a,b); }
    template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.f,p.s); }
    template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
    template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
}

using namespace input;

namespace output {
    template<class T1, class T2> void pr(const pair<T1,T2>& x);
    template<class T, size_t SZ> void pr(const array<T,SZ>& x);
    template<class T> void pr(const vector<T>& x);
    template<class T> void pr(const set<T>& x);
    template<class T1, class T2> void pr(const map<T1,T2>& x);

    template<class T> void pr(const T& x) { cout << x; }
    template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) { 
        pr(first); pr(rest...); 
    }

    template<class T1, class T2> void pr(const pair<T1,T2>& x) { 
        pr("{",x.f,", ",x.s,"}"); 
    }
    template<class T> void prContain(const T& x) {
        pr("{");
        bool fst = 1; trav(a,x) pr(!fst?", ":"",a), fst = 0; 
        pr("}");
    }
    template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
    template<class T> void pr(const vector<T>& x) { prContain(x); }
    template<class T> void pr(const set<T>& x) { prContain(x); }
    template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
    
    void ps() { pr("\n"); } 
    template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) { 
        pr(first," "); ps(rest...); // print w/ spaces
    }
}

using namespace output;

namespace io {
    void setIn(string s) { freopen(s.c_str(),"r",stdin); }
    void setOut(string s) { freopen(s.c_str(),"w",stdout); }
    void setIO(string s = "") {
        ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O
        if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
    }
}

using namespace io;

template<class T> T invGeneral(T a, T b) {
    a %= b; if (a == 0) return b == 1 ? 0 : -1;
    T x = invGeneral(b,a); 
    return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b;
}

template<class T> struct modInt {
    T val;
    T mod = 0;
    // static const T mod = MOD;

    void normalize() {
        if (mod == 0) return;
        val %= mod; if (val < 0) val += mod;
    }
    modInt(T v = 0, T m = 0) : val(v), mod(m) { normalize(); }
    // modInt(T v = 0, T m = 0) : val(v) { normalize(); }

    explicit operator T() const { return val; }
    friend ostream& operator<<(ostream& os, const modInt& a) { return os << a.val; }
    friend bool operator==(const modInt& a, const modInt& b) { return a.val == b.val; }
    friend bool operator!=(const modInt& a, const modInt& b) { return !(a == b); }

    friend void check(modInt& a, modInt& b) { // make sure all operations are valid
        // comment out if mod is static const
        if (a.mod > 0 && b.mod > 0) { assert(a.mod == b.mod); return; }
        T mod = max(a.mod,b.mod); if (mod == 0) mod = MOD;
        if (a.mod != mod) { a.mod = mod; a.normalize(); }
        if (b.mod != mod) { b.mod = mod; b.normalize(); }
    }
    friend modInt operator+(modInt a, modInt b) {
        check(a,b); a.val += (T)b;
        if (a.val >= a.mod) a.val -= a.mod;
        return a;
    }
    friend modInt operator-(modInt a, modInt b) {
        check(a,b); a.val -= (T)b; 
        if (a.val < 0) a.val += a.mod; 
        return a;
    }
    friend modInt operator-(const modInt& a) { return modInt(0)-a; }

    friend modInt operator*(modInt a, modInt b) {
        check(a,b); a.val = (ll)a.val*(T)b%a.mod; return a;
    }
    friend modInt exp(modInt a, ll p) {
        modInt ans(1,a.mod);
        for (; p; p /= 2, a *= a) if (p&1) ans *= a;
        return ans;
    }
    friend modInt inv(const modInt& a) {
        return {invGeneral(a.val,a.mod),a.mod};
        // return exp(b,b.mod-2) if prime
    }
    friend modInt operator/(modInt a, modInt b) { 
        check(a,b); return a*inv(b); 
    }
};

typedef modInt<int> mi;
typedef pair<mi,mi> pmi;
typedef vector<mi> vmi;
typedef vector<pmi> vpmi;

int N,verts, eds, oneEdge[MX];
pi pos[MX];
array<int,2> ed[MX];
map<array<int,2>,int> de;

double dist(int a, int b) {
    if (a == b) return 0;
    assert(de.count({a,b}) || de.count({b,a}));
    return sqrt(pow(pos[a].f-pos[b].f,2)+pow(pos[a].s-pos[b].s,2));
}

template<int SZ> struct LCA {
    const int MAXK = 32-__builtin_clz(SZ);
    
    int N, R = 1; // vertices from 1 to N, R = root
    vi adj[SZ];
    int par[32-__builtin_clz(SZ)][SZ], depth[SZ];
    array<array<double,2>,2> dists[32-__builtin_clz(SZ)][SZ];
    
    void addEdge(int u, int v) {
        adj[u].pb(v), adj[v].pb(u);
    }
    
    void dfs(int u, int prev){
        par[0][u] = prev;
        depth[u] = depth[prev]+1;
        if (prev) {
            F0R(i,2) F0R(j,2) dists[0][u][i][j] = dist(ed[u][i],ed[prev][j]);
            // ps("HUH",u,dists[0][u]);
        }
        for (int v: adj[u]) if (v != prev) dfs(v, u);
    }
    
    void init(int _N) {
    	N = _N;
        dfs(R, 0);
        FOR(k,1,MAXK) FOR(i,1,N+1) {
            par[k][i] = par[k-1][par[k-1][i]];
            F0R(x,2) F0R(z,2) {
                dists[k][i][x][z] = INF;
                F0R(y,2) ckmin(dists[k][i][x][z],
                        dists[k-1][i][x][y]+dists[k-1][par[k-1][i]][y][z]);
            }
        }
    }
    
    int lca(int u, int v){
        if (depth[u] < depth[v]) swap(u,v);
        
        F0Rd(k,MAXK) if (depth[u] >= depth[v]+(1<<k))  u = par[k][u];
        F0Rd(k,MAXK) if (par[k][u] != par[k][v]) u = par[k][u], v = par[k][v];
        
        if(u != v) u = par[0][u], v = par[0][v];
        return u;
    }
    
    int getPar(int x, int y) {
        F0Rd(k,MAXK) if (depth[y] < depth[x]-(1<<k))  x = par[k][x];
        assert(depth[y]+1 == depth[x]);
        return x;
    }
    array<array<double,2>,2> comb(array<array<double,2>,2> a, array<array<double,2>,2> b) {
        array<array<double,2>,2> res = array<array<double,2>,2>();
        F0R(i,2) F0R(j,2) res[i][j] = INF;
        F0R(i,2) F0R(j,2) F0R(k,2) ckmin(res[i][k],a[i][j]+b[j][k]);
        return res;
    }
    array<array<double,2>,2> getDist(int x, int y) {
        assert(depth[x] >= depth[y]);
        array<array<double,2>,2> cur = array<array<double,2>,2>();
        cur[0][1] = cur[1][0] = INF;
        F0Rd(k,MAXK) if (depth[y] <= depth[x]-(1<<k)) {
            cur = comb(cur,dists[k][x]);
            x = par[k][x];
        }
        return cur;
    }
    /*int dist(int u, int v) {
        return depth[u]+depth[v]-2*depth[lca(u,v)];
    }*/
};

LCA<MX> L;

double solve(int a, int b) {
    int ea = oneEdge[a], eb = oneEdge[b];
    // ps(a,b,oneEdge[a],oneEdge[b],ed[oneEdge[a]],ed[oneEdge[b]]);
    int x = L.lca(ea,eb), flag = 0;
    if (x == ea || x == eb) flag = 0;
    else {
        auto AA = L.getPar(ea,x), BB = L.getPar(eb,x);
        if (ed[AA][0] != ed[x][0] && ed[BB][1] != ed[x][1] && ed[AA][0] == ed[BB][1]) flag = 1;
        if (ed[AA][1] != ed[x][1] && ed[BB][0] != ed[x][0] && ed[AA][1] == ed[BB][0]) flag = 1;
        if (flag) {
            auto A = L.getDist(ea,AA), B = L.getDist(eb,BB); swap(B[0][1],B[1][0]);
            double ans = INF;
            // ps("HUH",ed[ea],ed[AA],ed[eb],ed[BB],A,B);
            F0R(i,2) F0R(j,2) F0R(k,2) F0R(l,2) {
                ckmin(ans,dist(a,ed[ea][i])+A[i][j]+dist(ed[AA][j],ed[BB][k])+B[k][l]+dist(ed[eb][l],b));
            }
            return ans;
        }
        // ps("HUH",x,A,B,ed[A],ed[B]);
    }
    auto A = L.getDist(ea,x), B = L.getDist(eb,x); swap(B[0][1],B[1][0]);
    // ps("HA",ea,eb,x,A,B,dist(1,2));
    double ans = INF;
    F0R(i,2) F0R(j,2) F0R(k,2) {
        ckmin(ans,dist(a,ed[ea][i])+A[i][j]+B[j][k]+dist(ed[eb][k],b));
    }
    return ans;
}

int main() {
    setIO(); re(pos[1],pos[2],N);
    de[ed[1] = {1,2}] = 1;
    verts = 2, eds = 1;
    oneEdge[1] = oneEdge[2] = 1;
    
    vpi query;
    F0R(i,N) {
        char t; re(t);
        if (t == 'd') {
            int A,B;
            re(pos[++verts],A,B);
            if (!de.count({A,B})) swap(A,B);
            assert(de.count({A,B}));
            eds ++;
            de[ed[eds] = {A,verts}] = eds;
            eds ++;
            de[ed[eds] = {verts,B}] = eds;
            L.addEdge(de[{A,B}],eds-1);
            L.addEdge(de[{A,B}],eds);
            oneEdge[verts] = eds;
        } else {
            int A,B; re(A,B);
            query.pb({A,B});
        }
    }
    // ps(ed[oneEdge[6]], ed[oneEdge[5]]);
    L.init(eds);
    cout << fixed << setprecision(3);
    trav(t,query) ps(solve(t.f,t.s));
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?), set tle
    * do smth instead of nothing and stay organized
*/

Compilation message

grad.cpp: In function 'void io::setIn(std::__cxx11::string)':
grad.cpp:117:35: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                            ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
grad.cpp: In function 'void io::setOut(std::__cxx11::string)':
grad.cpp:118:36: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
     void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                             ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 5632 KB 41 numbers
# Verdict Execution time Memory Grader output
1 Correct 9 ms 5760 KB 300 numbers
# Verdict Execution time Memory Grader output
1 Correct 10 ms 6144 KB 500 numbers
# Verdict Execution time Memory Grader output
1 Correct 258 ms 60592 KB 15000 numbers
2 Correct 299 ms 59068 KB 15000 numbers
3 Correct 311 ms 52452 KB 30000 numbers
# Verdict Execution time Memory Grader output
1 Correct 371 ms 87552 KB 28333 numbers
2 Correct 418 ms 84980 KB 28333 numbers
3 Correct 373 ms 68128 KB 40000 numbers
# Verdict Execution time Memory Grader output
1 Correct 530 ms 85744 KB 50000 numbers
2 Correct 661 ms 83216 KB 50000 numbers
3 Correct 489 ms 84084 KB 50000 numbers
# Verdict Execution time Memory Grader output
1 Correct 593 ms 78192 KB 55000 numbers
2 Correct 592 ms 75616 KB 55000 numbers
3 Correct 449 ms 83956 KB 50000 numbers
# Verdict Execution time Memory Grader output
1 Correct 670 ms 85680 KB 50000 numbers
2 Correct 786 ms 83828 KB 50000 numbers
3 Correct 808 ms 83024 KB 50000 numbers
4 Correct 650 ms 84372 KB 50000 numbers
# Verdict Execution time Memory Grader output
1 Correct 650 ms 94856 KB 44000 numbers
2 Correct 757 ms 92268 KB 44000 numbers
3 Correct 759 ms 91888 KB 44000 numbers
4 Correct 560 ms 92912 KB 44000 numbers
# Verdict Execution time Memory Grader output
1 Correct 557 ms 85524 KB 50000 numbers
2 Correct 619 ms 84596 KB 50000 numbers
3 Correct 665 ms 82932 KB 50000 numbers
4 Correct 610 ms 83824 KB 50000 numbers
# Verdict Execution time Memory Grader output
1 Correct 594 ms 92276 KB 45713 numbers
2 Correct 727 ms 77808 KB 54285 numbers
3 Correct 709 ms 70532 KB 58571 numbers
4 Correct 647 ms 73524 KB 57000 numbers
# Verdict Execution time Memory Grader output
1 Correct 666 ms 86480 KB 49285 numbers
2 Correct 688 ms 86476 KB 49285 numbers
3 Correct 748 ms 83608 KB 49285 numbers
4 Correct 624 ms 91116 KB 45000 numbers