#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
#define all(x) begin(x), end(x)
#define sz(x) (int) (x).size()
#define smin(a, b) a = min(a, b)
#define smax(a, b) a = max(a, b)
#define pb push_back
#define ins insert
#define f first
#define s second
int travel_plan(int N, int M, int R[][2],
int L[], int k, int p[]) {
const ll INF = 1e18;
int n = N, m = M;
vector<vector<pii>> adj(n);
for (int i = 0; i < m; i++) {
int x = R[i][0], y = R[i][1],
w = L[i];
adj[x].pb({y, w});
adj[y].pb({x, w});
}
vector<vector<ll>> dist(2,
vector<ll>(n, INF));
priority_queue<pll> pq;
for (int i = 0; i < k; i++) {
pq.push({0, p[i]});
dist[0][p[i]] = 0;
dist[1][p[i]] = 0;
}
while (!pq.empty()) {
auto N = pq.top(); pq.pop();
ll u = N.s, t = -N.f;
if (dist[1][u] != t) {
continue;
}
for (auto [v, w] : adj[u]) {
if (t + w < dist[0][v]) {
if (dist[0][v] != dist[1][v]) {
pq.push({-dist[0][v], v});
}
swap(dist[0][v], dist[1][v]);
dist[0][v] = t + w;
} else if (t + w < dist[1][v]) {
dist[1][v] = t + w;
pq.push({-dist[1][v], v});
}
}
}
return (int) dist[1][0];
}
/**
* Problem: IOI 2011 - Crocodile.
* Observations:
* 1. You will never go backwards.
* 2. Worst case, you always take the
* second best route forward, because
* the crocodile will block the best
* route possible.
*
* Run Dijkstra from each escape,
* basing each distance off the second
* best possibility for each node.
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
4444 KB |
Output is correct |
2 |
Correct |
1 ms |
4540 KB |
Output is correct |
3 |
Correct |
1 ms |
4444 KB |
Output is correct |
4 |
Correct |
1 ms |
4444 KB |
Output is correct |
5 |
Correct |
1 ms |
4444 KB |
Output is correct |
6 |
Correct |
1 ms |
4444 KB |
Output is correct |
7 |
Correct |
2 ms |
4552 KB |
Output is correct |
8 |
Correct |
1 ms |
4444 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
4444 KB |
Output is correct |
2 |
Correct |
1 ms |
4540 KB |
Output is correct |
3 |
Correct |
1 ms |
4444 KB |
Output is correct |
4 |
Correct |
1 ms |
4444 KB |
Output is correct |
5 |
Correct |
1 ms |
4444 KB |
Output is correct |
6 |
Correct |
1 ms |
4444 KB |
Output is correct |
7 |
Correct |
2 ms |
4552 KB |
Output is correct |
8 |
Correct |
1 ms |
4444 KB |
Output is correct |
9 |
Correct |
2 ms |
4696 KB |
Output is correct |
10 |
Correct |
1 ms |
4444 KB |
Output is correct |
11 |
Correct |
1 ms |
4444 KB |
Output is correct |
12 |
Correct |
3 ms |
5060 KB |
Output is correct |
13 |
Correct |
2 ms |
4956 KB |
Output is correct |
14 |
Correct |
1 ms |
4444 KB |
Output is correct |
15 |
Correct |
1 ms |
4444 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
4444 KB |
Output is correct |
2 |
Correct |
1 ms |
4540 KB |
Output is correct |
3 |
Correct |
1 ms |
4444 KB |
Output is correct |
4 |
Correct |
1 ms |
4444 KB |
Output is correct |
5 |
Correct |
1 ms |
4444 KB |
Output is correct |
6 |
Correct |
1 ms |
4444 KB |
Output is correct |
7 |
Correct |
2 ms |
4552 KB |
Output is correct |
8 |
Correct |
1 ms |
4444 KB |
Output is correct |
9 |
Correct |
2 ms |
4696 KB |
Output is correct |
10 |
Correct |
1 ms |
4444 KB |
Output is correct |
11 |
Correct |
1 ms |
4444 KB |
Output is correct |
12 |
Correct |
3 ms |
5060 KB |
Output is correct |
13 |
Correct |
2 ms |
4956 KB |
Output is correct |
14 |
Correct |
1 ms |
4444 KB |
Output is correct |
15 |
Correct |
1 ms |
4444 KB |
Output is correct |
16 |
Correct |
239 ms |
57860 KB |
Output is correct |
17 |
Correct |
44 ms |
16980 KB |
Output is correct |
18 |
Correct |
58 ms |
18356 KB |
Output is correct |
19 |
Correct |
293 ms |
66112 KB |
Output is correct |
20 |
Correct |
161 ms |
47956 KB |
Output is correct |
21 |
Correct |
22 ms |
9560 KB |
Output is correct |
22 |
Correct |
183 ms |
46516 KB |
Output is correct |