Submission #1008916

# Submission time Handle Problem Language Result Execution time Memory
1008916 2024-06-27T05:15:02 Z nima_aryan Skyscraper (JOI16_skyscraper) C++17
0 / 100
3 ms 1116 KB
/**
 *    author:  NimaAryan
 *    created: 2024-06-26 20:39:48
**/
#include <bits/stdc++.h>

using namespace std;

#ifdef LOCAL
#include "algo/debug.h"
#endif

using i64 = long long;

template <typename T>
T inverse(T a, T m) {
  T u = 0, v = 1;
  while (a != 0) {
    T t = m / a;
    m -= t * a; swap(a, m);
    u -= t * v; swap(u, v);
  }
  assert(m == 1);
  return u;
}

template <typename T>
class Modular {
 public:
  using Type = typename decay<decltype(T::value)>::type;

  constexpr Modular() : value() {}
  template <typename U>
  Modular(const U& x) {
    value = normalize(x);
  }

  template <typename U>
  static Type normalize(const U& x) {
    Type v;
    if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
    else v = static_cast<Type>(x % mod());
    if (v < 0) v += mod();
    return v;
  }

  const Type& operator()() const { return value; }
  template <typename U>
  explicit operator U() const { return static_cast<U>(value); }
  constexpr static Type mod() { return T::value; }

  Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
  Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
  template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
  template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
  Modular& operator++() { return *this += 1; }
  Modular& operator--() { return *this -= 1; }
  Modular operator++(int) { Modular result(*this); *this += 1; return result; }
  Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
  Modular operator-() const { return Modular(-value); }

  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type & operator*=(const Modular& rhs) {
#ifdef _WIN32
    uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
    uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
    asm(
      "divl %4; \n\t"
      : "=a" (d), "=d" (m)
      : "d" (xh), "a" (xl), "r" (mod())
    );
    value = m;
#else
    value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
    return *this;
  }
  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type & operator*=(const Modular& rhs) {
    long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());
    value = normalize(value * rhs.value - q * mod());
    return *this;
  }
  template <typename U = T>
  typename enable_if < !is_integral<typename Modular<U>::Type>::value, Modular >::type & operator*=(const Modular& rhs) {
    value = normalize(value * rhs.value);
    return *this;
  }

  Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }

  friend const Type& abs(const Modular& x) { return x.value; }

  template <typename U>
  friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);

  template <typename U>
  friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);

  template <typename V, typename U>
  friend V& operator>>(V& stream, Modular<U>& number);

 private:
  Type value;
};

template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }

template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }

template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }

template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }

template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }

template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }

template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }

template <typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
  assert(b >= 0);
  Modular<T> x = a, res = 1;
  U p = b;
  while (p > 0) {
    if (p & 1) res *= x;
    x *= x;
    p >>= 1;
  }
  return res;
}
template <typename T, typename U> Modular<T> operator^(const Modular<T>& lhs, U rhs) { return power(lhs, rhs); };

template <typename T>
bool IsZero(const Modular<T>& number) {
  return number() == 0;
}

template <typename T>
string to_string(const Modular<T>& number) {
  return to_string(number());
}

// U == std::ostream? but done this way because of fastoutput
template <typename U, typename T>
U& operator<<(U& stream, const Modular<T>& number) {
  return stream << number();
}

// U == std::istream? but done this way because of fastinput
template <typename U, typename T>
U& operator>>(U& stream, Modular<T>& number) {
  typename common_type<typename Modular<T>::Type, long long>::type x;
  stream >> x;
  number.value = Modular<T>::normalize(x);
  return stream;
}

/*
using ModType = int;

struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/

constexpr int md = (int) 1e9 + 7;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;

int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  int N, L;
  cin >> N >> L;

  vector<int> A(N);
  for (int i = 0; i < N; ++i) {
    cin >> A[i];
  }

  if (N == 1) {
    cout << 1 << "\n";
    return 0;
  }

  sort(A.begin(), A.end());
  int M = max(accumulate(A.begin(), A.end(), 0) / 2 + 10, 2 * A[0] + 5);
  int T = M + 1 + L;
  vector f(3, vector(N + 1, vector<Mint>(T + 1)));
  f[0][1][0] = 1;
  f[1][1][-A[0] + M] = 2;
  f[2][1][2 * -A[0] + M] = 1;
  for (int i = 1; i < N; ++i) {
    vector g(3, vector(N + 1, vector<Mint>(T + 1)));
    for (int c = 1; c <= N; ++c) {
      for (int s = 0; s <= T; ++s) {
        {
          if (c + 1 <= N && s - 2 * A[i] >= 0) {
            g[0][c + 1][s - 2 * A[i]] += f[0][c][s] * max(0, c - 1);
          }
          g[0][c][s] += f[0][c][s] * max(0, 2 * c - 2);
          if (c - 1 >= 0 && s + 2 * A[i] <= T) {
            g[0][c - 1][s + 2 * A[i]] += f[0][c][s] * max(0, c - 1);
          }
        }
        {
          if (c + 1 <= N && s - 2 * A[i] >= 0) {
            g[1][c + 1][s - 2 * A[i]] += f[1][c][s] * c;
          }
          if (c + 1 <= N && s - A[i] >= 0) {
            g[0][c + 1][s - A[i]] += f[1][c][s];
          }
          g[1][c][s] += f[1][c][s] * max(0, 2 * c - 1);
          if (s + A[i] <= T) {
            g[0][c][s + A[i]] += f[1][c][s];
          }
          if (c - 1 >= 0 && s + 2 * A[i] <= T) {
            g[1][c - 1][s + 2 * A[i]] += f[1][c][s] * max(0, c - 1);
          }
        }
        {
          if (c + 1 <= N && s - 2 * A[i] >= 0) {
            g[2][c + 1][s - 2 * A[i]] += f[2][c][s] * (c + 1);
          }
          if (c + 1 <= N && s - A[i] >= 0) {
            g[1][c + 1][s - A[i]] += f[2][c][s] * 2;
          }
          g[2][c][s] += f[2][c][s] * 2 * c;
          if (s + A[i] <= T) {
            g[1][c][s + A[i]] += f[2][c][s] * 2;
          }
          if (c - 1 >= 0 && s + 2 * A[i] <= T) {
            g[2][c - 1][s + 2 * A[i]] += f[2][c][s] * max(0, c - 1);
          }
        }
      }
    }
    f.swap(g);
  }

  Mint ans = 0;
  for (int l = 0; l <= L; ++l) {
    ans += f[0][1][l + M];
  }
  cout << ans << "\n";

  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 3 ms 1116 KB Output is correct
6 Correct 3 ms 860 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Incorrect 0 ms 348 KB Output isn't correct
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 2 ms 604 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 2 ms 604 KB Output is correct
5 Correct 2 ms 604 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Incorrect 1 ms 348 KB Output isn't correct
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 3 ms 1116 KB Output is correct
6 Correct 3 ms 860 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Incorrect 0 ms 348 KB Output isn't correct
11 Halted 0 ms 0 KB -