Submission #1006400

# Submission time Handle Problem Language Result Execution time Memory
1006400 2024-06-24T00:57:50 Z whatthemomooofun1729 Tropical Garden (IOI11_garden) C++17
100 / 100
95 ms 40084 KB
#include <iostream>
#include <algorithm>
#include <utility>
#include <vector>
#include <stack>
#include <map>
#include <queue>
#include <set>
#include <unordered_set>
#include <unordered_map>
#include <cstring>
#include <cmath>
#include <functional>
#include <cassert>
#include <iomanip>
#include <numeric>
#include <bitset>
#include <sstream>
#include <chrono>
#include <random>

#define ff first
#define ss second
#define PB push_back
#define sz(x) int(x.size())
#define rsz resize
#define fch(xxx, yyy) for (auto xxx : yyy) // abusive notation
#define all(x) (x).begin(),(x).end()
#define eps 1e-9

// more abusive notation (use at your own risk):
// #define int ll

using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using vi = vector<int>;
using vll = vector<ll>;

// debugging
void __print(int x) {std::cerr << x;}
void __print(ll x) {std::cerr << x;} /* remember to uncomment this when not using THE MACRO */
void __print(unsigned x) {std::cerr << x;}
void __print(ull x) {std::cerr << x;}
void __print(float x) {std::cerr << x;}
void __print(double x) {std::cerr << x;}
void __print(ld x) {std::cerr << x;}
void __print(char x) {std::cerr << '\'' << x << '\'';}
void __print(const char *x) {std::cerr << '\"' << x << '\"';}
void __print(const string& x) {std::cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
template<typename T, typename V> void __print(const pair<T, V> &x) {std::cerr << '{'; __print(x.ff); std::cerr << ", "; __print(x.ss); std::cerr << '}';}
template<typename T> void __print(const T& x) {int f = 0; std::cerr << '{'; for (auto &i: x) std::cerr << (f++ ? ", " : ""), __print(i); std::cerr << "}";}
void _print() {std::cerr << "]\n";}
template <typename T, typename... V> void _print(T t, V... v) {__print(t); if (sizeof...(v)) std::cerr << ", "; _print(v...);}
void println() {std::cerr << ">--------------------<" << endl;}
#ifndef ONLINE_JUDGE
#define debug(x...) cerr << "[" << #x << "] = ["; _print(x)
#else
#define debug(x...)
#endif

// templates
template <class T> bool ckmin(T &a, const T &b) {return b<a ? a = b, 1 : 0;}
template <class T> bool ckmax(T &a, const T &b) {return b>a ? a = b, 1 : 0;}
template <class T> using gr = greater<T>;
template <class T> using vc = vector<T>;
template <class T> using p_q = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vc<T>, gr<T>>;
template <class T1, class T2> using pr = pair<T1, T2>;
mt19937_64 rng_ll(chrono::steady_clock::now().time_since_epoch().count());
int rng(int M) {return (int)(rng_ll()%M);} /*returns any random number in [0, M) */

// const variables
constexpr int INF = (int)2e9;
constexpr int MOD = 998244353;
constexpr ll LL_INF = (ll)3e18;
constexpr int mod = (int)1e9 + 7;
constexpr ll inverse = 500000004LL; // inverse of 2 modulo 1e9 + 7

void setIO(const string& str) {// fast input/output
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    if (str.empty()) return;
    freopen((str + ".in").c_str(), "r", stdin);
    freopen((str + ".out").c_str(), "w", stdout);
}

#include "garden.h"
#include "gardenlib.h"

struct DSU {
    int N;
    vi parent, siz;
    vc<array<int, 2>> change;
    DSU() {}
    DSU(int n) {
        N = n;
        parent.clear(), siz.clear();
        parent.rsz(N+1), siz.rsz(N+1, 1);
        iota(1 + all(parent), 1);
    }
    int find_set(int v) {
        if (parent[v] == v) return v;
        else return parent[v] = find_set(parent[v]);
    }
    bool unite(int a, int b) {
        a = find_set(a), b = find_set(b);
        if (a == b) return false;
        if (siz[a] < siz[b]) swap(a, b);
        parent[b] = a;
        siz[a] += siz[b];
        change.PB({a, b});
        return true;
    }
    void roll_back() {
        array<int, 2> p = change.back();
        change.pop_back();
        parent[p[1]] = p[1];
        siz[p[0]] -= siz[p[1]];
    }
    bool connected(int a, int b) {
        return find_set(a) == find_set(b);
    }
    bool connected() {
        return siz[find_set(1)] == N;
    }
};

int N, M, P, Q, L, temp_p;
vc<vc<pii>> adj; // the adjacency list
vi f, beauty, vst, dp, deg;
// f: the element that i is adjacent to
// beauty: the maximum beauty of any edge including i
// dp: the distance from v to p
// deg: degree of the vertices
// 2 * i -> most beautiful
// 2 * i + 1 -> second most beautiful
vc<vi> adj_; // the adjacency list of the modified graph
vc<pii> queries; // answering queries offline
vi ans; // answer for each query
DSU d;
bool in_cycle = false; // whether p is in the cycle or not

void answer_2005() {
    //debug(P);
    //debug(in_cycle);
    if (!in_cycle) { // then the portion of vertices that can reach P form a DAG
        vi cnt(2 * N, 0); // cnt[i] = number of paths with dp[v] = i
        for (int i = 0; i < N; ++i) {
            if (dp[2 * i] == INF) continue;
            cnt[dp[2 * i]]++;
        }
        for (int i = 0; i < Q; ++i) {
            if (queries[i].ff <= 2 * N - 1) ans[queries[i].ss] += cnt[queries[i].ff];
            // else ans[queries[i].ss] = 0 <---- old code, it doesn't make any sense because we have to add 0, not set it to 0
        }
    } else {
        vi cnt(L, 0); // cnt[i] = number of paths with dp[v] === i mod L, L = length of the cycle
        vi order(N);
        iota(all(order), 0);
        sort(all(order), [&](const int& a, const int& b) { // sort vertices in order of increasing distance
            return dp[2 * a] < dp[2 * b];
        });
        int ptr = 0;
        //debug(L);
        for (int i = 0; i < Q; ++i) {
            while (ptr < N && dp[2 * order[ptr]] <= queries[i].ff) { // while the distance is smaller than K
                cnt[dp[2 * order[ptr]]%L]++;
                ptr++;
            }
            //debug(cnt);
            //debug(queries[i].ff % L);
            ans[queries[i].ss] += cnt[queries[i].ff % L];
        }
    }
}

void construction() {
    d = DSU(2 * N); // keep track of all connected components
    adj_.rsz(2 * N), f.rsz(2 * N);
    for (int i = 0; i < N; ++i) {
        //debug(i);
        set<pii> st;
        fch(u, adj[i]) {
            st.insert({u.ss, u.ff}); // sort the adjacent vertices in order
        }
        //debug(st);
        // set values for f[i]
        if (sz(st) == 1) {
            int u = (*st.begin()).ss, w = (*st.begin()).ff;
            f[2 * i] = f[2 * i + 1] = 2 * u + (w == beauty[u]); // when beauty[u] == -1, it will just equal to 2 * u
        } else if (sz(st) >= 2) {
            int u1 = (*st.begin()).ss, u2 = (*next(st.begin())).ss;
            int w1 = (*st.begin()).ff, w2 = (*next(st.begin())).ff;
            f[2 * i] = 2 * u1 + (w1 == beauty[u1]);
            f[2 * i + 1] = 2 * u2 + (w2 == beauty[u2]);
        }
    }
    for (int i = 0; i < 2 * N; ++i) {
        adj_[f[i]].PB(i); // adj_: the reverse of f
        d.unite(f[i], i); // update
        //cerr << i << ' ' << f[i] << '\n';
    }
}

void compute() {
    in_cycle = false;
    vst.clear(), vst.rsz(2 * N, 0), dp.clear(), dp.rsz(2 * N, INF);
    for (int i = 0; i < 2 * N; ++i) {
        if (!vst[d.find_set(i)]) { // checking if this component is visited
            vst[d.find_set(i)] = 1;
            int t = f[i]; // tortoise and hare
            int h = f[f[i]];
            while (t != h) {
                t = f[t];
                h = f[f[h]];
            }
            L = 1; // the length of the cycle that P is in
            if (t == P) in_cycle = true;
            t = f[t];
            while (t != h) {
                L++;
                if (t == P) {
                    in_cycle = true; // DONT BREAK HERE
                }
                t = f[t];
            }
            if (in_cycle) {
                break; // because P is in exactly one cycle and we have found it
            }
        }
    }
    vst.clear(), vst.rsz(2 * N, 0);
    queue<int> q;
    q.push(P);
    dp[P] = 0;
    vst[P] = 1;
    while (!q.empty()) {
        int v = q.front();
        q.pop();
        fch(u, adj_[v]) { // updating the shortest paths to each vertex
            if (!vst[u]) {
                vst[u] = 1;
                dp[u] = dp[v] + 1;
                q.push(u);
            }
        }
    }
}

void count_routes(int n, int m, int p, int R[][2], int q, int g[]) {
    N = n, M = m, P = p, Q = q;
    adj.rsz(N), queries.rsz(Q), beauty.rsz(N, M), ans.rsz(Q), deg.rsz(N, 0);
    for (int i = 0; i < M; ++i) {
        int a = R[i][0], b = R[i][1];
//        debug(i);
//        debug(a, b);
        assert(a < N && b < N);
        ckmin(beauty[a], i);
        ckmin(beauty[b], i);
        adj[a].PB({b, i});
        adj[b].PB({a, i});
        deg[a]++, deg[b]++;
    }
    for (int i = 0; i < N; ++i) {
        if (deg[i] == 1) {
            beauty[i] = -1; // only a single edge going from this vertex
        }
    }
    for (int i = 0; i < Q; ++i) {
        queries[i] = {g[i], i};
    }
    sort(all(queries)); // sort the queries by their value g[i]
    construction(); // construct the tree
    temp_p = P;
    P = 2 * P; // first, compute the answer assuming that all paths must end at 2 * P
    compute();
    answer_2005();
    P = 2 * temp_p + 1; // assume that all paths end at 2 * P + 1
    compute();
    answer_2005();
    for (int i = 0; i < Q; ++i) {
        answer(ans[i]);
    }
}
/*
int r[200000][2];
int g[200000];

signed main() { // TIME YOURSELF !!!
    setIO("");
    int n, m, p, q;
    cin >> n >> m >> p;
    for (int i = 0; i < m; ++i) {
        int a, b;
        cin >> a >> b;
        r[i][0] = a, r[i][1] = b;
        //debug(r[i][0], r[i][1]);
    }
    cin >> q;
    for (int i = 0; i < q; ++i) {
        cin >> g[i];
        //debug(g[i]);
    }
    count_routes(n, m, p, r, q, g);
    return 0;
}*/

// TLE -> TRY NOT USING DEFINE INT LONG LONG
// CE -> CHECK LINE 45
// 5000 * 5000 size matrices are kinda big (potential mle)
// Do something, start simpler

Compilation message

garden.cpp: In function 'void setIO(const string&)':
garden.cpp:88:12: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   88 |     freopen((str + ".in").c_str(), "r", stdin);
      |     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
garden.cpp:89:12: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   89 |     freopen((str + ".out").c_str(), "w", stdout);
      |     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 516 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 516 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 11 ms 7636 KB Output is correct
12 Correct 25 ms 11216 KB Output is correct
13 Correct 47 ms 23808 KB Output is correct
14 Correct 77 ms 32448 KB Output is correct
15 Correct 95 ms 33428 KB Output is correct
16 Correct 70 ms 24176 KB Output is correct
17 Correct 56 ms 21652 KB Output is correct
18 Correct 22 ms 11432 KB Output is correct
19 Correct 94 ms 33728 KB Output is correct
20 Correct 83 ms 33472 KB Output is correct
21 Correct 63 ms 24536 KB Output is correct
22 Correct 60 ms 21568 KB Output is correct
23 Correct 79 ms 35520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 516 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 604 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 604 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 11 ms 7636 KB Output is correct
12 Correct 25 ms 11216 KB Output is correct
13 Correct 47 ms 23808 KB Output is correct
14 Correct 77 ms 32448 KB Output is correct
15 Correct 95 ms 33428 KB Output is correct
16 Correct 70 ms 24176 KB Output is correct
17 Correct 56 ms 21652 KB Output is correct
18 Correct 22 ms 11432 KB Output is correct
19 Correct 94 ms 33728 KB Output is correct
20 Correct 83 ms 33472 KB Output is correct
21 Correct 63 ms 24536 KB Output is correct
22 Correct 60 ms 21568 KB Output is correct
23 Correct 79 ms 35520 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 10 ms 7636 KB Output is correct
26 Correct 23 ms 11216 KB Output is correct
27 Correct 47 ms 24004 KB Output is correct
28 Correct 80 ms 32704 KB Output is correct
29 Correct 88 ms 34724 KB Output is correct
30 Correct 69 ms 24288 KB Output is correct
31 Correct 60 ms 21952 KB Output is correct
32 Correct 22 ms 11472 KB Output is correct
33 Correct 78 ms 33216 KB Output is correct
34 Correct 89 ms 33724 KB Output is correct
35 Correct 83 ms 24536 KB Output is correct
36 Correct 63 ms 21704 KB Output is correct
37 Correct 77 ms 35776 KB Output is correct
38 Correct 82 ms 40084 KB Output is correct