Submission #1005363

# Submission time Handle Problem Language Result Execution time Memory
1005363 2024-06-22T11:11:51 Z jonathanirvings Flooding Wall (BOI24_wall) C++17
100 / 100
2501 ms 48296 KB
//start of jonathanirvings' template v3.0.3 (BETA)

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
typedef pair<string,string> pss;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<pii> vii;
typedef vector<LL> vl;
typedef vector<vl> vvl;

double EPS = 1e-9;
int INF = 1000000005;
long long INFF = 1000000000000000005LL;
double PI = acos(-1);
int dirx[8] = {-1,0,0,1,-1,-1,1,1};
int diry[8] = {0,1,-1,0,-1,1,-1,1};

#ifdef TESTING
  #define DEBUG fprintf(stderr,"====TESTING====\n")
  #define VALUE(x) cerr << "The value of " << #x << " is " << x << endl
  #define debug(...) fprintf(stderr, __VA_ARGS__)
#else
  #define DEBUG
  #define VALUE(x)
  #define debug(...)
#endif

#define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
#define FORN(a,b,c) for (int (a)=(b);(a)<=(c);++(a))
#define FORD(a,b,c) for (int (a)=(b);(a)>=(c);--(a))
#define FORSQ(a,b,c) for (int (a)=(b);(a)*(a)<=(c);++(a))
#define FORC(a,b,c) for (char (a)=(b);(a)<=(c);++(a))
#define FOREACH(a,b) for (auto &(a) : (b))
#define REP(i,n) FOR(i,0,n)
#define REPN(i,n) FORN(i,1,n)
#define MAX(a,b) a = max(a,b)
#define MIN(a,b) a = min(a,b)
#define SQR(x) ((LL)(x) * (x))
#define RESET(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ALL(v) v.begin(),v.end()
#define ALLA(arr,sz) arr,arr+sz
#define SIZE(v) (int)v.size()
#define SORT(v) sort(ALL(v))
#define REVERSE(v) reverse(ALL(v))
#define SORTA(arr,sz) sort(ALLA(arr,sz))
#define REVERSEA(arr,sz) reverse(ALLA(arr,sz))
#define PERMUTE next_permutation
#define TC(t) while(t--)

inline string IntToString(LL a){
  char x[100];
  sprintf(x,"%lld",a); string s = x;
  return s;
}

inline LL StringToInt(string a){
  char x[100]; LL res;
  strcpy(x,a.c_str()); sscanf(x,"%lld",&res);
  return res;
}

inline string GetString(void){
  char x[1000005];
  scanf("%s",x); string s = x;
  return s;
}

inline string uppercase(string s){
  int n = SIZE(s);
  REP(i,n) if (s[i] >= 'a' && s[i] <= 'z') s[i] = s[i] - 'a' + 'A';
  return s;
}

inline string lowercase(string s){
  int n = SIZE(s);
  REP(i,n) if (s[i] >= 'A' && s[i] <= 'Z') s[i] = s[i] - 'A' + 'a';
  return s;
}

inline void OPEN (string s) {
  #ifndef TESTING
  freopen ((s + ".in").c_str (), "r", stdin);
  freopen ((s + ".out").c_str (), "w", stdout);
  #endif
}

//end of jonathanirvings' template v3.0.3 (BETA)

template <int Mod>
struct ModInt {
  
  ModInt() : num_(0) {}
 
  template <class T>
  ModInt(T num) {
    long long x = (long long)(num % (long long)(Mod));
    if (x < 0) x += Mod;
    num_ = (int)(x);
  }
 
  ModInt& operator++() {
    num_++;
    if (num_ == Mod) num_ = 0;
    return *this;
  }
  ModInt& operator--() {
    if (num_ == 0) num_ = Mod;
    num_--;
    return *this;
  }
  ModInt operator++(int) {
    ModInt result = *this;
    ++*this;
    return result;
  }
  ModInt operator--(int) {
    ModInt result = *this;
    --*this;
    return result;
  }
 
  ModInt& operator+=(const ModInt& rhs) {
    num_ += rhs.num_;
    if (num_ >= Mod) num_ -= Mod;
    return *this;
  }
  ModInt& operator-=(const ModInt& rhs) {
    num_ -= rhs.num_;
    if (num_ < 0) num_ += Mod;
    return *this;
  }
  ModInt& operator*=(const ModInt& rhs) {
    long long z = num_;
    z *= rhs.num_;
    num_ = (int)(z % Mod);
    return *this;
  }
  ModInt& operator/=(const ModInt& rhs) { return *this = *this * rhs.inv(); }
 
  ModInt operator+() const { return *this; }
  ModInt operator-() const { return ModInt() - *this; }
 
  ModInt pow(long long n) const {
    assert(0 <= n);
    ModInt x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  ModInt inv() const {
    return pow(Mod - 2);
  }
 
  friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) += rhs;
  }
  friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) -= rhs;
  }
  friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) *= rhs;
  }
  friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) /= rhs;
  }
  friend bool operator==(const ModInt& lhs, const ModInt& rhs) {
    return lhs.num_ == rhs.num_;
  }
  friend bool operator!=(const ModInt& lhs, const ModInt& rhs) {
    return lhs.num_ != rhs.num_;
  }
 
  int get() const { return num_; }
 
  int num_;
};

template <int Mod>
struct ModBinomCoeff {
 
  ModBinomCoeff() {}
  ModBinomCoeff(int N) : fact_(N + 1), inv_fact_(N + 1) {
    fact_[0] = 1;
    for (int i = 1; i <= N; ++i) {
      fact_[i] = fact_[i - 1] * (i);
    }
    inv_fact_[N] = fact_[N].inv();
    for (int i = N - 1; i >= 0; --i) {
      inv_fact_[i] = inv_fact_[i + 1] * (i + 1);
    }
  }
 
  ModInt<Mod> fact(int N) {
    assert(N < fact_.size());
    return fact_[N];
  }
  ModInt<Mod> choose(int N, int K) {
    assert(N < fact_.size());
    return fact_[N] * inv_fact_[K] * inv_fact_[N - K];
  }
 
  vector<ModInt<Mod>> fact_;
  vector<ModInt<Mod>> inv_fact_;
};
 
constexpr int Mod998244353 = 998244353;
constexpr int Mod1000000007 = 1000000007;
constexpr int Mod = Mod1000000007;

using Int = ModInt<Mod>;

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1

#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>

namespace atcoder {

#if __cplusplus >= 201703L

template <class S, auto op, auto e> struct segtree {
    static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
                  "op must work as S(S, S)");
    static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
                  "e must work as S()");

#else

template <class S, S (*op)(S, S), S (*e)()> struct segtree {

#endif

  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        size = (int)internal::bit_ceil((unsigned int)(_n));
        log = internal::countr_zero((unsigned int)size);
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

#endif  // ATCODER_SEGTREE_HPP

#ifndef ATCODER_LAZYSEGTREE_HPP
#define ATCODER_LAZYSEGTREE_HPP 1

#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>

namespace atcoder {

#if __cplusplus >= 201703L

template <class S,
          auto op,
          auto e,
          class F,
          auto mapping,
          auto composition,
          auto id>
struct lazy_segtree {
    static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
                  "op must work as S(S, S)");
    static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
                  "e must work as S()");
    static_assert(
        std::is_convertible_v<decltype(mapping), std::function<S(F, S)>>,
        "mapping must work as S(F, S)");
    static_assert(
        std::is_convertible_v<decltype(composition), std::function<F(F, F)>>,
        "composition must work as F(F, F)");
    static_assert(std::is_convertible_v<decltype(id), std::function<F()>>,
                  "id must work as F()");

#else

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {

#endif

  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        size = (int)internal::bit_ceil((unsigned int)(_n));
        log = internal::countr_zero((unsigned int)size);
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

}  // namespace atcoder

#endif  // ATCODER_LAZYSEGTREE_HPP

struct MultiplicationNode {
  Int val;
  int count;

  static MultiplicationNode e() {
    return (MultiplicationNode){1, 0};
  }
  // static MultiplicationNode op(MultiplicationNode a, MultiplicationNode b) {
  //   return (MultiplicationNode){a.val * b.val, a.count + b.count};  
  // }
  // static MultiplicationNode mapping(Int f, MultiplicationNode x) {
  //   return (MultiplicationNode){x.val * f.pow(x.count), x.count};
  // }
};

Int multiply(Int f, Int g) {
  return f * g;
}
Int add(Int f, Int g) {
  return f + g;
}
Int one() {
  return Int(1);
}
Int zero() {
  return Int(0);
}

// using MultiplicationSegtree = atcoder::lazy_segtree<
//     MultiplicationNode, MultiplicationNode::op, MultiplicationNode::e,
//     Int, MultiplicationNode::mapping, multiply, one>;
using MultiplicationSegtree = atcoder::segtree<Int, multiply, one>;
using AdditionSegtree = atcoder::lazy_segtree<
    Int, add, zero,
    Int, multiply, multiply, one>;

int n;
int a[500005];
int b[500005];
int rem[500005];
Int totkiri[500005],totkanan[500005];
Int two[50005];

MultiplicationSegtree segrem;
AdditionSegtree segkanantambah;
// AdditionSegtree segkanankurang;
AdditionSegtree segkiritambah;
// AdditionSegtree segkirikurang;
// AdditionSegtree segkurang;
int logkurang;
bool kurangnol = 0;

int main()
{
  scanf("%d",&n);

  two[0] = 1;
  FORN(i,1,n+2) two[i] = two[i - 1] * 2;
  // segrem = MultiplicationSegtree(
  //     vector<MultiplicationNode>(n, (MultiplicationNode){2, 1}));
  segrem = MultiplicationSegtree(vector<Int>(n, 2));
  // segkanantambah = segkanankurang = segkiritambah = segkirikurang =
  //     AdditionSegtree(vector<Int>(n));
  // segkanantambah = segkanankurang = segkiritambah = segkirikurang =
  //     AdditionSegtree(vector<Int>(n, two[n]));
  segkanantambah = segkiritambah = AdditionSegtree(
      vector<Int>(n, two[n]));
  logkurang = n;
  REP(i,n)
  {
    // segkanantambah.set(i, two[n]);
    // segkanankurang.set(i, two[n - i - 1]);
    // segkiritambah.set(i, two[n]);
    // segkirikurang.set(i, two[i]);
  }

  REP(i,n) scanf("%d",&a[i]);
  REP(i,n) scanf("%d",&b[i]);
  vii angka;
  REP(i,n)
  {
    angka.pb(mp(a[i],i));
    angka.pb(mp(b[i],i));
  }
  SORT(angka);
  Int risan = 0;
  if (angka.back().fi == 2)
  {
    Int kiri = 1;
    Int kanan = two[n - 1];
    REP(i,n)
    {
      risan += (kiri - 1) * (kanan - 1);
      kiri *= 2;
      kanan /= 2;
    }
    printf("%d\n",risan.get());
    return 0;
  }
  REP(i,n) rem[i] = 2;
  Int half = Int(1) / 2;
  FORD(i,SIZE(angka)-1,0)
  {
    int pos = angka[i].se;
    int h = angka[i].fi;
    // totkiri[0] = 1;
    // FOR(j,1,n) totkiri[j] = totkiri[j - 1] * rem[j - 1];
    // totkanan[n - 1] = 1;
    // FORD(j,n-2,0) totkanan[j] = totkanan[j + 1] * rem[j + 1];
    
    Int inv_rempos = Int(1) / rem[pos];
    {
      risan += Int(h) * inv_rempos * segkanantambah.prod(pos + 1, n);
      // risan -= Int(h) * inv_rempos * segkanankurang.prod(pos + 1, n);
      if (!kurangnol)
          risan -= Int(h) * inv_rempos * two[logkurang] * (n - pos - 1);
      // FOR(j,pos+1,n)
      {
        // risan += totkiri[j] / rem[pos] * h * rem[j] * (two[n - j - 1] - totkanan[j]);
        // risan += Int(h) / rem[pos] * totkiri[j] * rem[j] * two[n - j - 1];
        // risan -= Int(h) / rem[pos] * totkiri[j] * rem[j] * totkanan[j];
      }
    }
    {
      risan += Int(h) * inv_rempos * segkiritambah.prod(0, pos);
      // risan -= Int(h) * inv_rempos * segkirikurang.prod(0, pos);
      if (!kurangnol)
          risan -= Int(h) * inv_rempos * two[logkurang] * (pos);
      // FORD(j,pos-1,0)
      {
        // risan += totkanan[j] / rem[pos] * h * rem[j] * (two[j] - totkiri[j]);
        // risan += Int(h) / rem[pos] * totkanan[j] * rem[j] * two[j];
        // risan -= Int(h) / rem[pos] * totkanan[j] * rem[j] * totkiri[j];
      }
    }
    // continue;
    {
      // Int cur = 1;
      // REP(j,n) if (j != pos) cur *= rem[j];
      // risan += h * cur;
      // cur = 1;
      // REP(j,pos) cur *= rem[j];
      // risan += h * cur * totkanan[pos];
      // cur = 1;
      // FORD(j,n-1,pos+1) cur *= rem[j];
      // risan += h * cur * totkiri[pos];
      
      // risan += h * totkiri[pos] * two[n - pos - 1];
      // risan += h * two[pos] * totkanan[pos];
      // risan -= h * totkiri[pos] * totkanan[pos];

      // risan += h * segrem.prod(0,pos).val * two[n - pos - 1];
      // risan += h * two[pos] * segrem.prod(pos+1,n).val;
      // risan -= h * segrem.prod(0,pos).val * segrem.prod(pos+1,n).val;
      Int a = segrem.prod(0,pos);
      Int b = segrem.prod(pos+1,n);
      risan += h * (a * two[n - pos - 1] + two[pos] * b - a * b);
    }
    // continue;
    if (rem[pos] == 2)
    {
      segrem.set(pos,1);
      segkanantambah.apply(pos, n, half);
      // segkanankurang.apply(0, pos + 1, Int(1) / 2);
      // segkanankurang.apply(0, n, half);
      segkiritambah.apply(0, pos + 1, half);
      // segkirikurang.apply(0, n, half);
      // segkirikurang.apply(pos, n, Int(1) / 2);
      // segkurang.apply(0, n, half);
      --logkurang;
    } else if (rem[pos] == 1)
    {
      segrem.set(pos,0);
      segkanantambah.apply(pos, n, 0);
      // segkanankurang.apply(0, pos + 1, 0);
      // segkanankurang.apply(0, n, 0);
      segkiritambah.apply(0, pos + 1, 0);
      // segkirikurang.apply(0, n, 0);
      // segkirikurang.apply(pos, n, 0);
      // segkurang.apply(0, n, 0);
      kurangnol = 1;
    }
    --rem[pos];
  }
  REP(i,n) risan -= (a[i] + b[i]) * two[n - 1];
  printf("%d\n",risan.get());
}



Compilation message

Main.cpp: In function 'std::string uppercase(std::string)':
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:79:3: note: in expansion of macro 'REP'
   79 |   REP(i,n) if (s[i] >= 'a' && s[i] <= 'z') s[i] = s[i] - 'a' + 'A';
      |   ^~~
Main.cpp: In function 'std::string lowercase(std::string)':
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:85:3: note: in expansion of macro 'REP'
   85 |   REP(i,n) if (s[i] >= 'A' && s[i] <= 'Z') s[i] = s[i] - 'A' + 'a';
      |   ^~~
Main.cpp: In function 'int main()':
Main.cpp:34:30: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   34 | #define FORN(a,b,c) for (int (a)=(b);(a)<=(c);++(a))
      |                              ^
Main.cpp:684:3: note: in expansion of macro 'FORN'
  684 |   FORN(i,1,n+2) two[i] = two[i - 1] * 2;
      |   ^~~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:695:3: note: in expansion of macro 'REP'
  695 |   REP(i,n)
      |   ^~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:703:3: note: in expansion of macro 'REP'
  703 |   REP(i,n) scanf("%d",&a[i]);
      |   ^~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:704:3: note: in expansion of macro 'REP'
  704 |   REP(i,n) scanf("%d",&b[i]);
      |   ^~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:706:3: note: in expansion of macro 'REP'
  706 |   REP(i,n)
      |   ^~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:717:5: note: in expansion of macro 'REP'
  717 |     REP(i,n)
      |     ^~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:726:3: note: in expansion of macro 'REP'
  726 |   REP(i,n) rem[i] = 2;
      |   ^~~
Main.cpp:35:30: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   35 | #define FORD(a,b,c) for (int (a)=(b);(a)>=(c);--(a))
      |                              ^
Main.cpp:728:3: note: in expansion of macro 'FORD'
  728 |   FORD(i,SIZE(angka)-1,0)
      |   ^~~~
Main.cpp:33:29: warning: unnecessary parentheses in declaration of 'i' [-Wparentheses]
   33 | #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
      |                             ^
Main.cpp:39:18: note: in expansion of macro 'FOR'
   39 | #define REP(i,n) FOR(i,0,n)
      |                  ^~~
Main.cpp:811:3: note: in expansion of macro 'REP'
  811 |   REP(i,n) risan -= (a[i] + b[i]) * two[n - 1];
      |   ^~~
Main.cpp:681:8: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  681 |   scanf("%d",&n);
      |   ~~~~~^~~~~~~~~
Main.cpp:703:17: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  703 |   REP(i,n) scanf("%d",&a[i]);
      |            ~~~~~^~~~~~~~~~~~
Main.cpp:704:17: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  704 |   REP(i,n) scanf("%d",&b[i]);
      |            ~~~~~^~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8796 KB Output is correct
2 Correct 1 ms 8796 KB Output is correct
3 Correct 1 ms 8796 KB Output is correct
4 Correct 1 ms 8796 KB Output is correct
5 Correct 1 ms 8796 KB Output is correct
6 Correct 1 ms 8796 KB Output is correct
7 Correct 1 ms 8796 KB Output is correct
8 Correct 1 ms 8796 KB Output is correct
9 Correct 1 ms 8792 KB Output is correct
10 Correct 1 ms 8792 KB Output is correct
11 Correct 1 ms 8796 KB Output is correct
12 Correct 1 ms 8604 KB Output is correct
13 Correct 1 ms 8796 KB Output is correct
14 Correct 1 ms 8792 KB Output is correct
15 Correct 1 ms 8796 KB Output is correct
16 Correct 1 ms 8796 KB Output is correct
17 Correct 1 ms 8796 KB Output is correct
18 Correct 1 ms 8796 KB Output is correct
19 Correct 1 ms 8796 KB Output is correct
20 Correct 1 ms 8796 KB Output is correct
21 Correct 1 ms 8796 KB Output is correct
22 Correct 1 ms 8796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8796 KB Output is correct
2 Correct 1 ms 8796 KB Output is correct
3 Correct 1 ms 8796 KB Output is correct
4 Correct 1 ms 8796 KB Output is correct
5 Correct 1 ms 8796 KB Output is correct
6 Correct 1 ms 8796 KB Output is correct
7 Correct 1 ms 8796 KB Output is correct
8 Correct 1 ms 8796 KB Output is correct
9 Correct 1 ms 8796 KB Output is correct
10 Correct 1 ms 8792 KB Output is correct
11 Correct 1 ms 8796 KB Output is correct
12 Correct 1 ms 8796 KB Output is correct
13 Correct 1 ms 8792 KB Output is correct
14 Correct 1 ms 8796 KB Output is correct
15 Correct 1 ms 8796 KB Output is correct
16 Correct 1 ms 8796 KB Output is correct
17 Correct 1 ms 8796 KB Output is correct
18 Correct 1 ms 8796 KB Output is correct
19 Correct 1 ms 8796 KB Output is correct
20 Correct 1 ms 8796 KB Output is correct
21 Correct 1 ms 8796 KB Output is correct
22 Correct 1 ms 8796 KB Output is correct
23 Correct 1 ms 8796 KB Output is correct
24 Correct 1 ms 8796 KB Output is correct
25 Correct 1 ms 8796 KB Output is correct
26 Correct 1 ms 8628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8796 KB Output is correct
2 Correct 1 ms 8796 KB Output is correct
3 Correct 1 ms 8796 KB Output is correct
4 Correct 1 ms 8796 KB Output is correct
5 Correct 1 ms 8796 KB Output is correct
6 Correct 1 ms 8796 KB Output is correct
7 Correct 1 ms 8796 KB Output is correct
8 Correct 1 ms 8796 KB Output is correct
9 Correct 1 ms 8796 KB Output is correct
10 Correct 1 ms 8792 KB Output is correct
11 Correct 1 ms 8796 KB Output is correct
12 Correct 1 ms 8796 KB Output is correct
13 Correct 1 ms 8792 KB Output is correct
14 Correct 1 ms 8796 KB Output is correct
15 Correct 1 ms 8796 KB Output is correct
16 Correct 1 ms 8796 KB Output is correct
17 Correct 1 ms 8796 KB Output is correct
18 Correct 1 ms 8796 KB Output is correct
19 Correct 1 ms 8796 KB Output is correct
20 Correct 1 ms 8796 KB Output is correct
21 Correct 1 ms 8796 KB Output is correct
22 Correct 1 ms 8796 KB Output is correct
23 Correct 1 ms 8796 KB Output is correct
24 Correct 1 ms 8796 KB Output is correct
25 Correct 1 ms 8796 KB Output is correct
26 Correct 1 ms 8628 KB Output is correct
27 Correct 33 ms 9560 KB Output is correct
28 Correct 34 ms 9560 KB Output is correct
29 Correct 5 ms 9560 KB Output is correct
30 Correct 4 ms 9564 KB Output is correct
31 Correct 29 ms 9564 KB Output is correct
32 Correct 33 ms 9560 KB Output is correct
33 Correct 29 ms 9564 KB Output is correct
34 Correct 30 ms 9564 KB Output is correct
35 Correct 29 ms 9564 KB Output is correct
36 Correct 30 ms 9560 KB Output is correct
37 Correct 5 ms 9560 KB Output is correct
38 Correct 4 ms 9564 KB Output is correct
39 Correct 28 ms 9564 KB Output is correct
40 Correct 33 ms 9564 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8796 KB Output is correct
2 Correct 1 ms 8796 KB Output is correct
3 Correct 1 ms 8796 KB Output is correct
4 Correct 1 ms 8796 KB Output is correct
5 Correct 1 ms 8796 KB Output is correct
6 Correct 1 ms 8796 KB Output is correct
7 Correct 1 ms 8796 KB Output is correct
8 Correct 1 ms 8796 KB Output is correct
9 Correct 1 ms 8792 KB Output is correct
10 Correct 1 ms 8792 KB Output is correct
11 Correct 1 ms 8796 KB Output is correct
12 Correct 1 ms 8604 KB Output is correct
13 Correct 1 ms 8796 KB Output is correct
14 Correct 1 ms 8792 KB Output is correct
15 Correct 1 ms 8796 KB Output is correct
16 Correct 1 ms 8796 KB Output is correct
17 Correct 1 ms 8796 KB Output is correct
18 Correct 1 ms 8796 KB Output is correct
19 Correct 1 ms 8796 KB Output is correct
20 Correct 1 ms 8796 KB Output is correct
21 Correct 1 ms 8796 KB Output is correct
22 Correct 1 ms 8796 KB Output is correct
23 Correct 1 ms 8796 KB Output is correct
24 Correct 1 ms 8796 KB Output is correct
25 Correct 1 ms 8796 KB Output is correct
26 Correct 1 ms 8796 KB Output is correct
27 Correct 1 ms 8796 KB Output is correct
28 Correct 1 ms 8796 KB Output is correct
29 Correct 1 ms 8796 KB Output is correct
30 Correct 1 ms 8796 KB Output is correct
31 Correct 1 ms 8796 KB Output is correct
32 Correct 1 ms 8792 KB Output is correct
33 Correct 1 ms 8796 KB Output is correct
34 Correct 1 ms 8796 KB Output is correct
35 Correct 1 ms 8792 KB Output is correct
36 Correct 1 ms 8796 KB Output is correct
37 Correct 1 ms 8796 KB Output is correct
38 Correct 1 ms 8796 KB Output is correct
39 Correct 1 ms 8796 KB Output is correct
40 Correct 1 ms 8796 KB Output is correct
41 Correct 1 ms 8796 KB Output is correct
42 Correct 1 ms 8796 KB Output is correct
43 Correct 1 ms 8796 KB Output is correct
44 Correct 1 ms 8796 KB Output is correct
45 Correct 1 ms 8796 KB Output is correct
46 Correct 1 ms 8796 KB Output is correct
47 Correct 1 ms 8796 KB Output is correct
48 Correct 1 ms 8628 KB Output is correct
49 Correct 33 ms 9560 KB Output is correct
50 Correct 34 ms 9560 KB Output is correct
51 Correct 5 ms 9560 KB Output is correct
52 Correct 4 ms 9564 KB Output is correct
53 Correct 29 ms 9564 KB Output is correct
54 Correct 33 ms 9560 KB Output is correct
55 Correct 29 ms 9564 KB Output is correct
56 Correct 30 ms 9564 KB Output is correct
57 Correct 29 ms 9564 KB Output is correct
58 Correct 30 ms 9560 KB Output is correct
59 Correct 5 ms 9560 KB Output is correct
60 Correct 4 ms 9564 KB Output is correct
61 Correct 28 ms 9564 KB Output is correct
62 Correct 33 ms 9564 KB Output is correct
63 Correct 39 ms 9564 KB Output is correct
64 Correct 31 ms 9648 KB Output is correct
65 Correct 31 ms 9560 KB Output is correct
66 Correct 32 ms 9564 KB Output is correct
67 Correct 33 ms 9564 KB Output is correct
68 Correct 30 ms 9560 KB Output is correct
69 Correct 30 ms 9564 KB Output is correct
70 Correct 34 ms 9620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8796 KB Output is correct
2 Correct 1 ms 8796 KB Output is correct
3 Correct 1 ms 8796 KB Output is correct
4 Correct 1 ms 8796 KB Output is correct
5 Correct 1 ms 8796 KB Output is correct
6 Correct 1 ms 8792 KB Output is correct
7 Correct 1 ms 8796 KB Output is correct
8 Correct 1 ms 8796 KB Output is correct
9 Correct 1 ms 8796 KB Output is correct
10 Correct 5 ms 9564 KB Output is correct
11 Correct 5 ms 9564 KB Output is correct
12 Correct 5 ms 9564 KB Output is correct
13 Correct 5 ms 9564 KB Output is correct
14 Correct 186 ms 37028 KB Output is correct
15 Correct 181 ms 37800 KB Output is correct
16 Correct 204 ms 37888 KB Output is correct
17 Correct 194 ms 37796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8796 KB Output is correct
2 Correct 1 ms 8796 KB Output is correct
3 Correct 1 ms 8796 KB Output is correct
4 Correct 1 ms 8796 KB Output is correct
5 Correct 1 ms 8796 KB Output is correct
6 Correct 1 ms 8796 KB Output is correct
7 Correct 1 ms 8796 KB Output is correct
8 Correct 1 ms 8796 KB Output is correct
9 Correct 1 ms 8792 KB Output is correct
10 Correct 1 ms 8792 KB Output is correct
11 Correct 1 ms 8796 KB Output is correct
12 Correct 1 ms 8604 KB Output is correct
13 Correct 1 ms 8796 KB Output is correct
14 Correct 1 ms 8792 KB Output is correct
15 Correct 1 ms 8796 KB Output is correct
16 Correct 1 ms 8796 KB Output is correct
17 Correct 1 ms 8796 KB Output is correct
18 Correct 1 ms 8796 KB Output is correct
19 Correct 1 ms 8796 KB Output is correct
20 Correct 1 ms 8796 KB Output is correct
21 Correct 1 ms 8796 KB Output is correct
22 Correct 1 ms 8796 KB Output is correct
23 Correct 1 ms 8796 KB Output is correct
24 Correct 1 ms 8796 KB Output is correct
25 Correct 1 ms 8796 KB Output is correct
26 Correct 1 ms 8796 KB Output is correct
27 Correct 1 ms 8796 KB Output is correct
28 Correct 1 ms 8796 KB Output is correct
29 Correct 1 ms 8796 KB Output is correct
30 Correct 1 ms 8796 KB Output is correct
31 Correct 1 ms 8796 KB Output is correct
32 Correct 1 ms 8792 KB Output is correct
33 Correct 1 ms 8796 KB Output is correct
34 Correct 1 ms 8796 KB Output is correct
35 Correct 1 ms 8792 KB Output is correct
36 Correct 1 ms 8796 KB Output is correct
37 Correct 1 ms 8796 KB Output is correct
38 Correct 1 ms 8796 KB Output is correct
39 Correct 1 ms 8796 KB Output is correct
40 Correct 1 ms 8796 KB Output is correct
41 Correct 1 ms 8796 KB Output is correct
42 Correct 1 ms 8796 KB Output is correct
43 Correct 1 ms 8796 KB Output is correct
44 Correct 1 ms 8796 KB Output is correct
45 Correct 1 ms 8796 KB Output is correct
46 Correct 1 ms 8796 KB Output is correct
47 Correct 1 ms 8796 KB Output is correct
48 Correct 1 ms 8628 KB Output is correct
49 Correct 33 ms 9560 KB Output is correct
50 Correct 34 ms 9560 KB Output is correct
51 Correct 5 ms 9560 KB Output is correct
52 Correct 4 ms 9564 KB Output is correct
53 Correct 29 ms 9564 KB Output is correct
54 Correct 33 ms 9560 KB Output is correct
55 Correct 29 ms 9564 KB Output is correct
56 Correct 30 ms 9564 KB Output is correct
57 Correct 29 ms 9564 KB Output is correct
58 Correct 30 ms 9560 KB Output is correct
59 Correct 5 ms 9560 KB Output is correct
60 Correct 4 ms 9564 KB Output is correct
61 Correct 28 ms 9564 KB Output is correct
62 Correct 33 ms 9564 KB Output is correct
63 Correct 39 ms 9564 KB Output is correct
64 Correct 31 ms 9648 KB Output is correct
65 Correct 31 ms 9560 KB Output is correct
66 Correct 32 ms 9564 KB Output is correct
67 Correct 33 ms 9564 KB Output is correct
68 Correct 30 ms 9560 KB Output is correct
69 Correct 30 ms 9564 KB Output is correct
70 Correct 34 ms 9620 KB Output is correct
71 Correct 1 ms 8796 KB Output is correct
72 Correct 1 ms 8796 KB Output is correct
73 Correct 1 ms 8796 KB Output is correct
74 Correct 1 ms 8796 KB Output is correct
75 Correct 1 ms 8796 KB Output is correct
76 Correct 1 ms 8792 KB Output is correct
77 Correct 1 ms 8796 KB Output is correct
78 Correct 1 ms 8796 KB Output is correct
79 Correct 1 ms 8796 KB Output is correct
80 Correct 5 ms 9564 KB Output is correct
81 Correct 5 ms 9564 KB Output is correct
82 Correct 5 ms 9564 KB Output is correct
83 Correct 5 ms 9564 KB Output is correct
84 Correct 186 ms 37028 KB Output is correct
85 Correct 181 ms 37800 KB Output is correct
86 Correct 204 ms 37888 KB Output is correct
87 Correct 194 ms 37796 KB Output is correct
88 Correct 2302 ms 37284 KB Output is correct
89 Correct 2501 ms 47272 KB Output is correct
90 Correct 2025 ms 40108 KB Output is correct
91 Correct 2073 ms 48296 KB Output is correct
92 Correct 1961 ms 40620 KB Output is correct
93 Correct 2107 ms 39588 KB Output is correct
94 Correct 2220 ms 47012 KB Output is correct
95 Correct 1984 ms 39152 KB Output is correct
96 Correct 2036 ms 43676 KB Output is correct
97 Correct 2255 ms 44340 KB Output is correct