Submission #1003226

# Submission time Handle Problem Language Result Execution time Memory
1003226 2024-06-20T08:02:44 Z pera Werewolf (IOI18_werewolf) C++17
100 / 100
738 ms 142844 KB
#include<bits/stdc++.h>
#include "werewolf.h"
using namespace std;
const int NMAX = 2e5 + 1 , LOG = 20;
int T = 0;
vector<int> ri(NMAX) , rd(NMAX) , ini(NMAX) , outi(NMAX) , ind(NMAX) , outd(NMAX) , t(4 * NMAX) , ord = {0};
vector<vector<int>> p(NMAX , vector<int>(2)) , g(NMAX) , gi(NMAX) , gd(NMAX);
vector<vector<vector<int>>> up(2 , vector<vector<int>>(NMAX , vector<int>(LOG))) , queries(NMAX);
void update(int u , int l , int r , int pos , int x){
   if(l == r){
      t[u] = x;
      return;
   }
   int m = (l + r) / 2;
   if(pos <= m){
      update(u * 2 , l , m , pos , x);
   }else{
      update(u * 2 + 1 , m + 1 , r , pos , x);
   }
   t[u] = max(t[u * 2] , t[u * 2 + 1]);
}
int get(int u , int l , int r , int L , int R){
   if(l > r || r < L || l > R){
      return 0;
   }
   if(L <= l && r <= R){
      return t[u];
   }
   int m = (l + r) / 2;
   return max(get(u * 2 , l , m , L , R) , get(u * 2 + 1 , m + 1 , r , L , R));
}
int find(int u , int type){
   return p[u][type] == u ? p[u][type] : p[u][type] = find(p[u][type] , type);
}
void unite(int u , int v , int type){
   int root_u = find(u , type) , root_v = find(v , type);
   if(root_u != root_v){
      p[root_v][type] = root_u;
      type == 0 ? ri[root_v] = u : rd[root_v] = u;
   }
}
void dfsi(int u){
   ini[u] = ++T;
   for(int x : gi[u]){
      dfsi(x);
   }
   outi[u] = T;
}
void dfsd(int u){
   ord.push_back(u);
   ind[u] = ++T;
   for(int x : gd[u]){
      dfsd(x);
   }
   outd[u] = T;
}
int max_up_L(int u , int val){
   for(int bit = LOG - 1;bit >= 0;bit--){
      if(up[1][u][bit] >= val){
         u = up[1][u][bit];
      }
   }
   return u;
}
int max_up_R(int u , int val){
   for(int bit = LOG - 1;bit >= 0;bit --){
      if(up[0][u][bit] <= val){
         u = up[0][u][bit];
      }
   }
   return u;
}
vector<int> check_validity(int N , vector<int> X , vector<int> Y , vector<int> S , vector<int> E , vector<int> L , vector<int> R){
   int M = (int)X.size();
   for(int i = 0;i < M;i ++){
      g[++X[i]].push_back(++Y[i]);
      g[Y[i]].push_back(X[i]);
   }
   for(int i = 1;i <= N;i ++){
      for(int x = 0;x < 2;x ++){
         p[i][x] = i;
      }
      ri[i] = rd[i] = i;
   }
   for(int i = 1;i <= N;i ++){
      for(int x : g[i]){
         if(x < i){
            unite(i , x , 0);
         }
      }
   }
   for(int i = N;i >= 1;i --){
      for(int x : g[i]){
         if(x > i){
            unite(i , x , 1);
         }
      }
   }
   for(int i = 1;i <= N;i ++){
      up[0][i][0] = ri[i];
      up[1][i][0] = rd[i];
      if(ri[i] != i){
         gi[ri[i]].push_back(i);
      }
      if(rd[i] != i){
         gd[rd[i]].push_back(i);
      }
   }
   dfsi(N);
   T = 0;
   dfsd(1);
   for(int bit = 1;bit < LOG;bit ++){
      for(int i = 1;i <= N;i ++){
         for(int x = 0;x < 2;x ++){
            up[x][i][bit] = up[x][up[x][i][bit - 1]][bit - 1];
         }
      }
   }
   int Q = (int)S.size();
   vector<int> ans(Q);
   for(int i = 0;i < Q;i ++){
      int root_S = max_up_L(++S[i] , ++L[i]);
      int root_E = max_up_R(++E[i] , ++R[i]);
      queries[outd[root_S]].push_back({ind[root_S] , ini[root_E] , outi[root_E] , i});
   }
   for(int i = 1;i <= N;i ++){
      update(1 , 1 , N , ini[ord[i]] , i);
      for(auto x : queries[i]){
         ans[x[3]] = get(1 , 1 , N , x[1] , x[2]) >= x[0];
      }
   }
   return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 69 ms 103664 KB Output is correct
2 Correct 54 ms 103760 KB Output is correct
3 Correct 55 ms 103548 KB Output is correct
4 Correct 58 ms 103504 KB Output is correct
5 Correct 63 ms 103508 KB Output is correct
6 Correct 58 ms 103504 KB Output is correct
7 Correct 72 ms 103508 KB Output is correct
8 Correct 94 ms 103508 KB Output is correct
9 Correct 73 ms 103760 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 69 ms 103664 KB Output is correct
2 Correct 54 ms 103760 KB Output is correct
3 Correct 55 ms 103548 KB Output is correct
4 Correct 58 ms 103504 KB Output is correct
5 Correct 63 ms 103508 KB Output is correct
6 Correct 58 ms 103504 KB Output is correct
7 Correct 72 ms 103508 KB Output is correct
8 Correct 94 ms 103508 KB Output is correct
9 Correct 73 ms 103760 KB Output is correct
10 Correct 73 ms 103628 KB Output is correct
11 Correct 69 ms 103664 KB Output is correct
12 Correct 66 ms 103508 KB Output is correct
13 Correct 80 ms 103760 KB Output is correct
14 Correct 65 ms 103508 KB Output is correct
15 Correct 65 ms 103504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 617 ms 133376 KB Output is correct
2 Correct 567 ms 135916 KB Output is correct
3 Correct 561 ms 133116 KB Output is correct
4 Correct 579 ms 132352 KB Output is correct
5 Correct 563 ms 132528 KB Output is correct
6 Correct 521 ms 133500 KB Output is correct
7 Correct 501 ms 132352 KB Output is correct
8 Correct 562 ms 135684 KB Output is correct
9 Correct 449 ms 132368 KB Output is correct
10 Correct 379 ms 132212 KB Output is correct
11 Correct 386 ms 132476 KB Output is correct
12 Correct 417 ms 131888 KB Output is correct
13 Correct 589 ms 141320 KB Output is correct
14 Correct 629 ms 141308 KB Output is correct
15 Correct 570 ms 141308 KB Output is correct
16 Correct 668 ms 141308 KB Output is correct
17 Correct 467 ms 132352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 69 ms 103664 KB Output is correct
2 Correct 54 ms 103760 KB Output is correct
3 Correct 55 ms 103548 KB Output is correct
4 Correct 58 ms 103504 KB Output is correct
5 Correct 63 ms 103508 KB Output is correct
6 Correct 58 ms 103504 KB Output is correct
7 Correct 72 ms 103508 KB Output is correct
8 Correct 94 ms 103508 KB Output is correct
9 Correct 73 ms 103760 KB Output is correct
10 Correct 73 ms 103628 KB Output is correct
11 Correct 69 ms 103664 KB Output is correct
12 Correct 66 ms 103508 KB Output is correct
13 Correct 80 ms 103760 KB Output is correct
14 Correct 65 ms 103508 KB Output is correct
15 Correct 65 ms 103504 KB Output is correct
16 Correct 617 ms 133376 KB Output is correct
17 Correct 567 ms 135916 KB Output is correct
18 Correct 561 ms 133116 KB Output is correct
19 Correct 579 ms 132352 KB Output is correct
20 Correct 563 ms 132528 KB Output is correct
21 Correct 521 ms 133500 KB Output is correct
22 Correct 501 ms 132352 KB Output is correct
23 Correct 562 ms 135684 KB Output is correct
24 Correct 449 ms 132368 KB Output is correct
25 Correct 379 ms 132212 KB Output is correct
26 Correct 386 ms 132476 KB Output is correct
27 Correct 417 ms 131888 KB Output is correct
28 Correct 589 ms 141320 KB Output is correct
29 Correct 629 ms 141308 KB Output is correct
30 Correct 570 ms 141308 KB Output is correct
31 Correct 668 ms 141308 KB Output is correct
32 Correct 467 ms 132352 KB Output is correct
33 Correct 615 ms 133880 KB Output is correct
34 Correct 267 ms 129020 KB Output is correct
35 Correct 667 ms 136708 KB Output is correct
36 Correct 535 ms 134144 KB Output is correct
37 Correct 598 ms 135828 KB Output is correct
38 Correct 576 ms 134764 KB Output is correct
39 Correct 604 ms 141164 KB Output is correct
40 Correct 698 ms 142844 KB Output is correct
41 Correct 525 ms 134488 KB Output is correct
42 Correct 465 ms 133376 KB Output is correct
43 Correct 722 ms 141864 KB Output is correct
44 Correct 670 ms 135788 KB Output is correct
45 Correct 507 ms 140544 KB Output is correct
46 Correct 544 ms 140544 KB Output is correct
47 Correct 634 ms 141312 KB Output is correct
48 Correct 699 ms 141228 KB Output is correct
49 Correct 738 ms 141308 KB Output is correct
50 Correct 691 ms 141376 KB Output is correct
51 Correct 728 ms 142704 KB Output is correct
52 Correct 710 ms 142584 KB Output is correct