Submission #1001832

# Submission time Handle Problem Language Result Execution time Memory
1001832 2024-06-19T07:57:27 Z shmax Ideal city (IOI12_city) C++17
100 / 100
526 ms 27228 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("O3")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define int long long
#define float long double
#define elif else if
#define endl "\n"
#define mod 1000000007
#define pi acos(-1)
#define eps 0.000000001
#define inf 1000'000'000'000'000'000LL
#define FIXED(a) cout << fixed << setprecision(a)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define time_init auto start = std::chrono::high_resolution_clock::now()
#define time_report                                       \
        auto end = std::chrono::high_resolution_clock::now(); \
        std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl
#define debug(x) \
        { cerr << #x << " = " << x << endl; }
#define len(x) (int) x.size()
#define sqr(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
#define bit(x, i) (((x) >> (i)) & 1)
#define set_bit(x, i) ((x) | (1LL << (i)))
#define clear_bit(x, i) ((x) & (~(1LL << (i))))
#define toggle_bit(x, i) ((x) ^ (1LL << (i)))
#define low_bit(x) ((x) & (-(x)))
#define count_bit(x) __builtin_popcountll(x)
#define srt(x) sort(all(x))
#define rsrt(x) sort(rall(x))
#define mp make_pair
#define maxel(x) (*max_element(all(x)))
#define minel(x) (*min_element(all(x)))
#define maxelpos(x) (max_element(all(x)) - x.begin())
#define minelpos(x) (min_element(all(x)) - x.begin())
#define sum(x) (accumulate(all(x), 0LL))
#define product(x) (accumulate(all(x), 1LL, multiplies<int>()))
#define gcd __gcd
#define lcm(a, b) ((a) / gcd(a, b) * (b))
#define rev(x) (reverse(all(x)))
#define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end()))
#define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend()))
#define is_sorted(x) (is_sorted_until(all(x)) == x.end())
#define is_even(x) (((x) &1) == 0)
#define is_odd(x) (((x) &1) == 1)
#define pow2(x) (1LL << (x))

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }

    size_t operator()(pair<int, int> Y) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(Y.first + FIXED_RANDOM) ^ (splitmix64(Y.second + FIXED_RANDOM) >> 1);
    }
};

template<typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using max_heap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using matrix = vector<vector<T>>;
template<typename T>
using graph = vector<vector<T>>;
using hashmap = gp_hash_table<int, int, custom_hash>;
template<typename T>
using hashset = gp_hash_table<T, null_type, custom_hash>;

template<typename T>
vector<T> vect(int n, T val) {
    return vector<T>(n, val);
}

template<typename T>
vector<vector<T>> vect(int n, int m, T val) {
    return vector<vector<T>>(n, vector<T>(m, val));
}

template<typename T>
vector<vector<vector<T>>> vect(int n, int m, int k, T val) {
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val)));
}

template<typename T>
vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) {
    return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val))));
}

template<typename T>
matrix<T> new_matrix(int n, int m, T val) {
    return matrix<T>(n, vector<T>(m, val));
}

template<typename T>
graph<T> new_graph(int n) {
    return graph<T>(n);
}

template<class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}

template<class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;

template<typename T>
using vec = vector<T>;

using pII = pair<int, int>;
template<typename T>
using enumerated = pair<T, int>;

int solve(int n, vec<pII> points) {


    auto do_it = [&]() { ;
        vec<int> a;
        set<pII> ps(all(points));
        set<pII> points_set(all(points));
        map<pII, int> id;
        int cur = 0;
        while (!ps.empty()) {
            auto [x, y] = *ps.begin();
            int k = 0;
            int nx = x + 1;
            int ny = y;
            while (ps.count({x, y})) {
                id[{x, y}] = cur;
                ps.erase({x, y});
                k++;
                x--;
            }
            x = nx;
            y = ny;
            while (ps.count({x, y})) {
                id[{x, y}] = cur;
                ps.erase({x, y});
                k++;
                x++;
            }
            cur++;
            a.push_back(k);
        }
        set<pII> edges;
        graph<int> g(cur);
        vec<pII> moves = {{0, 1},
                          {0, -1}};
        for (auto [x, y]: points) {
            for (auto [dx, dy]: moves) {
                int nx = x + dx;
                int ny = y + dy;
                if (!points_set.count({nx, ny})) continue;
                int id_ = id[{nx, ny}];
                edges.insert({id[{x, y}], id_});
                edges.insert({id_, id[{x, y}]});
            }
        }
        for (auto [v, u]: edges) {
            g[v].push_back(u);
        }
        vec<int> sizes(cur);
        int ans = 0;
        function<void(int, int)> dfs = [&](int v, int p) {
            sizes[v] = a[v];
            for (auto u: g[v]) {
                if (u == p) continue;
                dfs(u, v);
                int S = sizes[u];
                int tS = n - S;
                ans += S * tS;
                sizes[v] += sizes[u];
            }
        };
        dfs(0, -1);
        return ans;
    };
    int ans = do_it();
    for (int i = 0; i < n; i++) {
        swap(points[i].first, points[i].second);
    }
    ans += do_it();
    return ans;
}

i32 DistanceSum(i32 n, i32 *Xa_, i32 *Ya_) {
    vec<pII> points(n);
    for (int i = 0; i < n; i++) {
        points[i] = {Xa_[i], Ya_[i]};
    }
    return solve(n, points) % 1000000000;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 440 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 600 KB Output is correct
2 Correct 3 ms 444 KB Output is correct
3 Correct 4 ms 828 KB Output is correct
4 Correct 5 ms 788 KB Output is correct
5 Correct 7 ms 892 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 5 ms 860 KB Output is correct
8 Correct 5 ms 860 KB Output is correct
9 Correct 5 ms 604 KB Output is correct
10 Correct 5 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 71 ms 3892 KB Output is correct
2 Correct 67 ms 3920 KB Output is correct
3 Correct 218 ms 9044 KB Output is correct
4 Correct 205 ms 9300 KB Output is correct
5 Correct 506 ms 17748 KB Output is correct
6 Correct 462 ms 18000 KB Output is correct
7 Correct 468 ms 18332 KB Output is correct
8 Correct 500 ms 17748 KB Output is correct
9 Correct 462 ms 18564 KB Output is correct
10 Correct 442 ms 27228 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 75 ms 5528 KB Output is correct
2 Correct 79 ms 4948 KB Output is correct
3 Correct 206 ms 13008 KB Output is correct
4 Correct 232 ms 11604 KB Output is correct
5 Correct 496 ms 25808 KB Output is correct
6 Correct 476 ms 20844 KB Output is correct
7 Correct 526 ms 26240 KB Output is correct
8 Correct 515 ms 21076 KB Output is correct
9 Correct 475 ms 20052 KB Output is correct
10 Correct 495 ms 19964 KB Output is correct